Electronic Supplementary Information (ESI)

Sudden polarization and zwitterions formation as a pseudo Jahn-Teller effect: A new insight in photochemistry of alkenes

Ya Wang¹, Yang Liu¹*, Isaac B. Bersuker²*

- ¹ State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
- ² Department of Chemistry, The University of Texas at Austin, Austin TX, USA
 - * Corresponding author: bersuker@cm.utexas.edu; yang.liu@hit.edu.cn

Figure S1. (Color online). Calculated potential energy profiles of the excited state S_1 (¹A") of butadiene along all its *a*" polar modes; only four of them contribute to lowering the energy by distortion.

Figure S2. Electronic configuration and corresponding orbital excitations for the $S_1(1^1A)$ and $S_2(2^1A)$ states of perpendicular *s-cis,s-trans*-diallyl, calculated with CAS(2,2) (left) and CAS(6,6) (right) methods. The coefficient for each configuration is given in the parentheses. Related molecular orbitals are dipicted in the middle of the figure.

Figure S3. The dipole moment profiles of the $S_1(1^1B_u)$ and $S_1(2^1A_g)$ excited states along all the polar b_u modes for Cl/Br/I-stilbene. The values of their dipole moments are all much smaller than in F-stilbene, and decline with the increase of the shown energy gaps between the S_1 and S_2 states ΔE_{S2-S1} .

Active space	Electron configuration	Electron transition	Orbitals	
CAS(2,2)	ba(-0.71)			
	ab(0.71)			
CAS(6,6)	22ba00(-0.69)		LUMO+5(π*)	ε LUMO+4(π*)
	22ab00(0.69)			
CAS(10, 10)	222ba20000(-0.33)	НОМО-2→НОМО		
	222ab20000(0.33)	НОМО-2→НОМО	LUMO+3(π*)	$= \frac{1}{2}$
	22b22a0000(0.32)	НОМО-3→НОМО-1		
	22a22b0000(-0.32)	НОМО-3→НОМО-1		
	22220ba000(-0.28)	HOMO-1→LUMO	LUMO+1(π*)	LUMO(π^*)
	22220ab000(0.28)	HOMO-1→LUMO		
	2222a00b00(-0.28)	HOMO→LUMO+1		
	2222b00a00(0.28)	HOMO→LUMO+1	HOMO(π^*)	HOMO-1(π*)
CAS(14, 14)	22222ba2000000(-0.31)	НОМО-2→НОМО		
	22222ab2000000(0.31)	НОМО-2→НОМО		
	2222b22a000000(0.31)	НОМО-3→НОМО-1	HOMO-2(π*)	HOMO-3(π*)
	2222a22b000000(-0.31)	НОМО-3→НОМО-1		
	222222b00a0000(0.26)	HOMO→LUMO+1	HOMO-4 (π^*)	
	222222a00b0000(-0.26)	HOMO→LUMO+1		HOMO- $5(\pi^*)$
	2222220ba00000(-0.26)	HOMO-1→LUMO		
	2222220ab00000(0.26)	HOMO-1→LUMO	HOMO-6(π*)	HOMO-7(π*)

Table S1. The main electronic configurations (with CI coefficients in parenthesis) and the orbital excitations in the excited $S_1(^1B)$ state of perpendicular stilbene.