Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Electronic Supplementary Information

Calculating transition dipole moments of phosphorescent emitters for efficient organic light-emitting diodes

Mohammad Babazadeh,^a Paul L. Burn,^{*a} and David M. Huang^{*b}

^a Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences The University of Queensland, Queensland, 4072 Australia. Fax: +61(07)33469273; Tel: +61 (0)733467614; E-mail: p.burn2@uq.edu.au

^b Department of Chemistry, School of Physical Sciences The University of Adelaide, Adelaide 5005, Australia. E-mail: david.huang@adelaide.edu.au Input files for the calculations discussed in the main paper are given below. The molecular geometries in the input files for geometry optimizations are the optimized geometries resulting from the calculations.

1. Gas-phase calculations

1.1 Geometry Optimization

Input file: BP86 ground-state geometry optimization in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 BP86 ground-state SO geometry optimization (gas phase)

lr	0.00000000	0.00000000	0.00000000
Ν	-0.20165000	-1.84017100	1.09621300
Ν	1.69023500	0.74695200	1.10026100
Ν	-1.49257800	1.09283900	1.09790000
С	0.54518100	-2.88115700	0.60708000
С	2.21656700	1.91664800	0.61492600
С	-2.76748200	0.96785300	0.60839500
С	0.47367000	-4.14069200	1.22597600
С	3.33531100	2.48995200	1.24281100
С	-3.82267700	1.65710000	1.22983200
С	-0.34880500	-4.33779900	2.32561500
С	3.91184700	1.87883600	2.34677900
С	-3.58239100	2.46360300	2.33282700
С	-1.10733000	-3.26653600	2.80668900
С	3.36647700	0.68275200	2.82250700
С	-2.27535300	2.58351000	2.81420500
С	-1.00409800	-2.04300200	2.16009600
С	2.26268200	0.15523200	2.16754000
С	-1.26715000	1.88529900	2.16471800
Н	1.06458500	-4.96410400	0.83081400
Н	3.75077600	3.41621000	0.85188300
Н	-4.83123000	1.55823100	0.83443000
Н	-0.40484900	-5.31620300	2.80184200
Н	4.78067400	2.32430500	2.83044200
Н	-4.40185100	2.99902000	2.81136900
Н	-1.77290000	-3.37378000	3.66090300
Н	3.78858400	0.16138900	3.67937000
Н	-2.03556800	3.21012400	3.67101000
Н	-1.58020000	-1.17955800	2.48865800
Н	1.80524900	-0.77800300	2.49186400
Н	-0.23133800	1.95161100	2.49349100
С	-1.66912000	-0.46823700	-1.04520600
С	1.24109600	-1.21074900	-1.04479700
С	0.42986900	1.67982900	-1.04465700
С	1.35838600	-2.54877000	-0.55717500
С	1.52765800	2.45174200	-0.55400400

С	-2.88617700	0.09973100	-0.55764500
С	-4.11889800	-0.16350700	-1.18453900
С	2.20359600	-3.48426500	-1.18365100
С	1.91859700	3.64940600	-1.18234200
С	-4.17893200	-0.98878400	-2.29953800
С	2.94761800	-3.12357100	-2.29914400
С	1.23908700	4.11050600	-2.30200800
С	-2.99667100	-1.55544600	-2.79399100
С	2.84590900	-1.81661400	-2.79426000
С	0.15968300	3.36826200	-2.79938700
С	-1.77253000	-1.29947400	-2.17824800
С	2.01191400	-0.88469700	-2.17840500
С	-0.23348000	2.18188700	-2.18192800
Н	2.28268700	-4.50204400	-0.79960600
Н	2.75965100	4.22718000	-0.79702600
Н	-5.03966100	0.27768800	-0.80089700
Н	-5.13427200	-1.19131800	-2.78265800
Н	3.60107400	-3.84944300	-2.78203300
Н	1.54366200	5.03751100	-2.78675100
Н	-3.03359700	-2.20453800	-3.67051500
Н	3.42556500	-1.52409700	-3.67142700
Н	-0.37968300	3.72183100	-3.67974200
Н	-0.87052300	-1.75244500	-2.58869300
Н	1.95236500	0.12272300	-2.58919300
Н	-1.07460700	1.62569900	-2.59467700
Enc	1		
Bas	is		
typ	e TZ2P		
Cor	e None		
End	ł		
хс			
GG	A BP86		
EN	C		

SCF

Iterations 200 End

GEOMETRY Optim

Converge grad=0.0001 End

BECKEGRID Quality verygood End

RELATIVISTIC Scalar ZORA

End Input eor

Input file: B3LYP ground state geometry optimization in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 B3LYP ground state S0 geometry optimization (gas phase)

Ir	0.00000000	0.00000000	0.00000000
Ν	-0.19567500	-1.86770600	1.09395000
Ν	1.71473500	0.76459800	1.09237100
Ν	-1.51727300	1.10307400	1.09595700
С	0.54395700	-2.88707000	0.58573800
С	2.22772600	1.91517300	0.58444800
С	-2.77031100	0.97667000	0.58752700
С	0.47525100	-4.15300600	1.17846800
С	3.35721000	2.48887100	1.17942700
С	-3.83013900	1.67026900	1.18283900
С	-0.34450300	-4.36453100	2.26963700
С	3.94795300	1.88557100	2.27254100
С	-3.60110200	2.48149700	2.27697800
С	-1.10267300	-3.30883500	2.76674200
С	3.41219100	0.70120400	2.76929700
С	-2.30735300	2.60509300	2.77437100
С	-0.99868700	-2.08081300	2.14273300
С	2.29836100	0.17661000	2.14292100
С	-1.29793700	1.90081300	2.14735200
Н	1.05789800	-4.96725900	0.77596000
Н	3.77148400	3.40075600	0.77785000
Н	-4.82699600	1.57680100	0.78048000
Н	-0.40015900	-5.34394200	2.72583000
Н	4.82295400	2.32759000	2.73032000
Н	-4.42009400	3.01958500	2.73555200
Н	-1.76569300	-3.43378600	3.61060600
Н	3.84979000	0.19068300	3.61498500
Н	-2.08239800	3.23780800	3.62076300
Н	-1.57414600	-1.22998300	2.47843600
Н	1.84910800	-0.74739800	2.47773800
Н	-0.27314400	1.96996100	2.48301900
С	-1.67180300	-0.47731800	-1.04840700
С	1.25185700	-1.20662500	-1.04873000
С	0.41980600	1.68545700	-1.05051500
С	1.35904500	-2.54047400	-0.57671900
С	1.52143200	2.44594000	-0.57991600
С	-2.87923000	0.10030700	-0.57717100
С	-4.10155900	-0.15093100	-1.21498200
С	2.19391900	-3.47030400	-1.21103200
С	1.91133000	3.63103200	-1.21858600

С	-4.15433600	-0.97524100	-2.32389500			
С	2.93735200	-3.10134100	-2.31692500			
С	1.22254600	4.08532500	-2.32817000			
С	-2.97857800	-1.55592300	-2.79873800			
С	2.84921100	-1.79321200	-2.79235800			
С	0.13466200	3.35313400	-2.80284100			
С	-1.76521200	-1.31220300	-2.17067800			
C	2.02483400	-0.86764600	-2.16811200			
C	-0.25749500	2.17994700	-2.17380300			
H	2.26828200	-4.48618600	-0.84700500			
Н	2.75390500	4.20433400	-0.85575100			
Н	-5.01766600	0.29515900	-0.85181900			
Н	-5.09849600	-1.16603300	-2.81599100			
Н	3.58003700	-3.82094600	-2.80595300			
Н	1.52625800	4.99913100	-2.82088400			
н	-3.01238000	-2.20307500	-3.66693100			
н	3.42884700	-1.49686000	-3.65827200			
н	-0.40878700	3,70301500	-3.67221500			
н	-0.87006200	-1.77316700	-2.56480200			
н	1.97525100	0.13783700	-2.56244400			
н	-1.10258400	1.63254900	-2.56777300			
Fnd	1110200100	110020 1000	2.007770000			
Bas	is					
tvne	- T72P					
Cor	Core None					
End	e None					
2110						
хс						
hvh	rid B3I YP					
FNI						
SCF						
ltor	ations 200					
End						
LIIU						
GEC	METOV					
Ont	im					
Con	worgo grad-0 0	001				
End	lverge grau-0.0	001				
Enu						
	VECDID					
Qua	End					
EIIU						
REI						
NLL						
End	Input					
eor						
201						

Input file: BP86 TDDFT excited triplet-state geometry optimization in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 BP86 TDDFT excited triplet-state geometry optimization (gas phase)

lr	0.003252	-0.048694	-0.103035
Ν	-0.189849	-1.900377	0.997672
Ν	1.522436	0.759935	1.195369
Ν	-1.441397	1.159563	1.023909
С	0.619134	-2.906527	0.541933
С	2.126399	1.927958	0.664115
С	-2.728021	1.082233	0.564633
С	0.610327	-4.158288	1.178873
С	3.257829	2.450645	1.296550
С	-3.735419	1.856122	1.164028
С	-0.234662	-4.384743	2.256364
С	3.817183	1.850943	2.420310
С	-3.425537	2.709799	2.213471
С	-1.071653	-3.352838	2.693211
С	3.213544	0.646150	2.911668
С	-2.103603	2.785196	2.660285
С	-1.015567	-2.130787	2.036768
С	2.105908	0.153106	2.268988
С	-1.145001	1.996504	2.037704
Н	1.267537	-4.949153	0.822207
Н	3.711932	3.352786	0.886065
Н	-4.757354	1.787016	0.796474
Н	-0.245281	-5.355073	2.752494
Н	4.699725	2.271765	2.897874
Н	-4.204044	3.316712	2.676111
Н	-1.756042	-3.488052	3.529032
Н	3.611566	0.119041	3.777015
Н	-1.811274	3.447655	3.473204
Н	-1.641861	-1.292233	2.339277
Н	1.623156	-0.760871	2.615397
Н	-0.098292	2.015569	2.335414
С	-1.749427	-0.513190	-1.014506
С	1.278645	-1.193574	-1.093702
С	0.426537	1.688096	-1.102596
С	1.427263	-2.544406	-0.618098
С	1.488000	2.456860	-0.529996
С	-2.917166	0.157694	-0.550854
С	-4.170931	-0.088425	-1.137994
С	2.303619	-3.436223	-1.250925
С	1.857064	3.674545	-1.142302
С	-4.294039	-1.002679	-2.178222
С	3.044183	-3.025338	-2.357284
С	1.207942	4.126764	-2.289681
С	-3.158715	-1.686455	-2.631212

С 2.918245 -1.711123 -2.835876 С 0.169247 3.378483 -2.847767 С -1.911843 -1.455391 -2.051025 С 2.064028 -0.811194 -2.210775 С -0.216011 2.169127 -2.243820 н 2.417294 -4.457844 -0.886061 2.658234 4.278762 -0.713682 Н -5.059156 0.435221 -0.782330 Н Н -5.267384 -1.187778 -2.632386 н 3.723858 -3.723913 -2.845376 1.512001 5.070267 -2.745542 Н -3.247329 -2.405761 -3.447266 Н Н 3.502553 -1.392996 -3.700486 Н -0.344103 3.727678 -3.744672 н -1.042949 -1.993624 -2.428762 Н 1.980234 0.206890 -2.587413 н -1.028549 1.592900 -2.688761 End

Basis

Type TZ2P Core None End

SCF Iterations 200 End

GEOMETRY Optim Converge grad=0.0001 End

RELATIVISTIC Scalar ZORA

XC GGA BP86 END

EXCITATION Onlytrip Lowest 1 END

EXCITEDGO State A 1 Triplet END

HFAtomsPerPass 1

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 40 tol=1e-4 Subend End

End Input eor

Input file: B3LYP TDDFT excited triplet-state geometry optimization in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 B3LYP TDDFT excited triplet-state geometry optimization (gas phase)

Ir	0.04870100	-0.04006800	-0.06874300
Ν	-0.16222100	-1.92608500	1.03476600
Ν	1.47993400	0.80493000	1.19600500
Ν	-1.47840900	1.16942500	1.05867200
С	0.58453300	-2.93183000	0.51847000
С	2.10565600	1.96275500	0.65887300
С	-2.73989200	1.07746100	0.57537100
С	0.54189200	-4.20400100	1.09767500
С	3.24455600	2.46644800	1.26968400
С	-3.76244200	1.85144800	1.13732200
С	-0.27387100	-4.43674400	2.19024100
С	3.79400200	1.87950400	2.40336500
С	-3.48172700	2.70997100	2.18385100
С	-1.04393700	-3.39498900	2.69732400
С	3.15468800	0.71119400	2.92411200
С	-2.17890100	2.79219500	2.66441100
С	-0.95530600	-2.15673000	2.08547200
С	2.04356000	0.22572100	2.30871300
С	-1.20895900	2.00707600	2.06759400
Н	1.14075900	-5.00420700	0.68889900
Н	3.71724200	3.33933900	0.83918300
Н	-4.76613500	1.78490400	0.74541200
Н	-0.31266000	-5.42023800	2.64045000
Н	4.68245700	2.28265200	2.86558200
Н	-4.26831800	3.31502700	2.61688100
Н	-1.69951300	-3.53401600	3.54541600
Н	3.53968000	0.20409300	3.79837100
Н	-1.91212400	3.45489600	3.47548100
Н	-1.53139300	-1.31201300	2.43902800
Н	1.54467600	-0.65708600	2.68285200
Н	-0.17728000	2.03740100	2.38654200
С	-1.73231300	-0.48732200	-1.01487900
С	1.25933000	-1.21048000	-1.11294200

С	0.44178200	1.67879100	-1.11004100
С	1.38171600	-2.56070200	-0.65457800
С	1.47711700	2.47300900	-0.54420000
С	-2.90434400	0.14397800	-0.54137100
С	-4.15124800	-0.12018500	-1.12447300
С	2.22337100	-3.45911900	-1.30897700
С	1.83949500	3.67976700	-1.16901700
С	-4.26099100	-1.00922900	-2.17943000
С	2.95126800	-3.05650500	-2.42177700
С	1.20808900	4.09612700	-2.33007600
С	-3.11553800	-1.64359100	-2.65578500
С	2.84299500	-1.74546800	-2.88909700
С	0.19430700	3.31982100	-2.88855000
С	-1.87655400	-1.39017500	-2.07980900
С	2.01578100	-0.84030300	-2.24612500
С	-0.18164700	2.12503100	-2.27211800
Н	2.32374200	-4.47857400	-0.95991500
Н	2.61753600	4.29991200	-0.74124400
Н	-5.04374200	0.36825500	-0.75532800
Н	-5.22626300	-1.20732300	-2.62739800
Н	3.60180200	-3.76199800	-2.92280800
Н	1.50185600	5.02817700	-2.79767800
Н	-3.18720400	-2.33944900	-3.48355400
Н	3.41195500	-1.43445600	-3.75661000
Н	-0.30301300	3.64081800	-3.79568500
Н	-1.00645500	-1.89272700	-2.47933200
Н	1.94033200	0.17106200	-2.61773600
Н	-0.96986200	1.53286300	-2.71977600
-	1		

End

Basis Type TZ2P Core None End

SCF

Iterations 200 End

GEOMETRY Optim Converge grad=0.0001 End

RELATIVISTIC Scalar ZORA

XC HYBRID B3LYP END EXCITATION Onlytrip Lowest 1 END

EXCITEDGO State A 1 Triplet END

HFAtomsPerPass 1

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 40 tol=1e-4 Subend End

End Input eor

Input file: BP86 UDFT triplet-state geometry optimization in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 UDFT triplet-state geometry optimization (gas phase)

	-		
lr	0.00160200	-0.00120900	-0.08602900
Ν	-0.21047200	-1.81278000	1.05839600
Ν	1.66963200	0.72345800	1.06127800
Ν	-1.45869300	1.08602100	1.06279100
С	0.55325400	-2.86656200	0.58118700
С	2.19805000	1.91488100	0.58590300
С	-2.75325800	0.95749300	0.58416400
С	0.53339600	-4.09865800	1.26472600
С	3.26528100	2.52118500	1.27874300
С	-3.80896500	1.58943600	1.27127200
С	-0.26977400	-4.27606500	2.37605900
С	3.81419600	1.91946600	2.39565700
С	-3.55955300	2.36514700	2.38830900
С	-1.07026400	-3.20315400	2.81918300
С	3.28953900	0.68587800	2.83538500
С	-2.23009600	2.51444700	2.83404600
С	-1.00150800	-2.00226500	2.13351800
С	2.22443500	0.13766400	2.14153500
С	-1.22583200	1.85691000	2.14414800
Н	1.15926500	-4.91407400	0.90735800
н	3.65468500	3.47370700	0.92453000

Н	-4.82822400	1.46001800	0.91259100
Н	-0.28382700	-5.23146300	2.89881200
Н	4.64022600	2.39145400	2.92594900
Н	-4.37893900	2.85374000	2.91391500
Н	-1.73187400	-3.29897500	3.67729300
Н	3.69974500	0.16394900	3.69711900
Н	-1.98121000	3.12812200	3.69705000
Н	-1.59310600	-1.14150700	2.44198400
Н	1.77812900	-0.80766300	2.44692900
Н	-0.18448800	1.93370500	2.45363500
С	-1.68007000	-0.47469000	-1.09252500
С	1.25285100	-1.21688400	-1.09373100
С	0.42778800	1.68856300	-1.09635300
С	1.32405500	-2.56870600	-0.60656000
С	1.56146200	2.42816000	-0.60671900
С	-2.88313400	0.14522100	-0.60631200
С	-4.11171600	-0.08247400	-1.26100300
С	2.14230000	-3.51426500	-1.25921000
С	1.97463700	3.60648300	-1.26354800
С	-4.17619400	-0.92545300	-2.36207600
С	2.90294200	-3.14516900	-2.36045200
С	1.27899000	4.07579600	-2.36939500
С	-3.01492200	-1.56511900	-2.82536900
С	2.86782500	-1.82054200	-2.82639900
С	0.14998900	3.38234600	-2.83644000
С	-1.79248500	-1.34733200	-2.19087200
С	2.06266700	-0.87473000	-2.19312800
С	-0.26960700	2.21503700	-2.19970600
Н	2.18422700	-4.54449400	-0.90532200
Н	2.84560300	4.15834900	-0.90973100
Н	-5.02209800	0.40275700	-0.90874100
Н	-5.12952500	-1.09168100	-2.86353100
Н	3.52868400	-3.88451800	-2.86015100
Н	1.60927500	4.98440400	-2.87268500
Н	-3.06731600	-2.22826600	-3.68939000
Н	3.46639700	-1.53226800	-3.69103200
Н	-0.39532500	3.75337600	-3.70471000
Н	-0.89820800	-1.83782700	-2.57337600
Н	2.03390400	0.14433100	-2.57681300
Н	-1.13677700	1.67954900	-2.58416700

End

RELATIVISTIC Scalar ZORA

Unrestricted Charge 0 2

Basis type TZ2P Core None End

XC GGA BP86 END

SCF Iterations 200 End

BECKEGRID Quality verygood End

End Input eor

1.2 TDDFT excited-state energy calculations

Input file: B3LYP TDDFT (ground-state geometry) spin-orbit perturbation calculation (pSOC-TDDFT) in gas phase

\$ADFBIN/adf <<eor

Title Ir(ppy)3 (BP86/TZ2P S0 optimised) B3LYP TDDFT relativistic spin-orbit perturbation (gas phase)

Ir	0.00000000	0.00000000	0.00000000
Ν	-0.20165000	-1.84017100	1.09621300
Ν	1.69023500	0.74695200	1.10026100
Ν	-1.49257800	1.09283900	1.09790000
С	0.54518100	-2.88115700	0.60708000
С	2.21656700	1.91664800	0.61492600
С	-2.76748200	0.96785300	0.60839500
С	0.47367000	-4.14069200	1.22597600
С	3.33531100	2.48995200	1.24281100
С	-3.82267700	1.65710000	1.22983200
С	-0.34880500	-4.33779900	2.32561500
С	3.91184700	1.87883600	2.34677900
С	-3.58239100	2.46360300	2.33282700
С	-1.10733000	-3.26653600	2.80668900
С	3.36647700	0.68275200	2.82250700
С	-2.27535300	2.58351000	2.81420500
С	-1.00409800	-2.04300200	2.16009600

С	2.26268200	0.15523200	2.16754000
С	-1.26715000	1.88529900	2.16471800
Н	1.06458500	-4.96410400	0.83081400
Н	3.75077600	3.41621000	0.85188300
Н	-4.83123000	1.55823100	0.83443000
Н	-0.40484900	-5.31620300	2.80184200
Н	4.78067400	2.32430500	2.83044200
Н	-4.40185100	2.99902000	2.81136900
Н	-1.77290000	-3.37378000	3.66090300
Н	3.78858400	0.16138900	3.67937000
Н	-2.03556800	3.21012400	3.67101000
Н	-1.58020000	-1.17955800	2.48865800
Н	1.80524900	-0.77800300	2.49186400
Н	-0.23133800	1.95161100	2.49349100
С	-1.66912000	-0.46823700	-1.04520600
С	1.24109600	-1.21074900	-1.04479700
С	0.42986900	1.67982900	-1.04465700
С	1.35838600	-2.54877000	-0.55717500
С	1.52765800	2.45174200	-0.55400400
С	-2.88617700	0.09973100	-0.55764500
С	-4.11889800	-0.16350700	-1.18453900
С	2.20359600	-3.48426500	-1.18365100
С	1.91859700	3.64940600	-1.18234200
С	-4.17893200	-0.98878400	-2.29953800
С	2.94761800	-3.12357100	-2.29914400
С	1.23908700	4.11050600	-2.30200800
С	-2.99667100	-1.55544600	-2.79399100
С	2.84590900	-1.81661400	-2.79426000
С	0.15968300	3.36826200	-2.79938700
С	-1.77253000	-1.29947400	-2.17824800
С	2.01191400	-0.88469700	-2.17840500
С	-0.23348000	2.18188700	-2.18192800
Н	2.28268700	-4.50204400	-0.79960600
Н	2.75965100	4.22718000	-0.79702600
Н	-5.03966100	0.27768800	-0.80089700
Н	-5.13427200	-1.19131800	-2.78265800
Н	3.60107400	-3.84944300	-2.78203300
Н	1.54366200	5.03751100	-2.78675100
Н	-3.03359700	-2.20453800	-3.67051500
Н	3.42556500	-1.52409700	-3.67142700
Н	-0.37968300	3.72183100	-3.67974200
Н	-0.87052300	-1.75244500	-2.58869300
Н	1.95236500	0.12272300	-2.58919300
Н	-1.07460700	1.62569900	-2.59467700

End

SOPERT Relativistic scalar ZORA

Basis

Type TZP Core None End

AddDiffuseFit

SCF Iterations 300 End

XC HYBRID B3LYP End

EXACTDENSITY

Excitations Lowest 20 End

LOCORB end

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 30 tol=1e-4 Subend End

End Input eor

Input file: B3LYP TDDFT (ground-state geometry) spin-orbit SCF calculation (SOC-TDDFT) in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 (BP86/TZ2P S0 optimised) B3LYP TDDFT relativistic spin-orbit SCF (gas phase)

Ir	0.00000000	0.00000000	0.00000000
Ν	-0.20165000	-1.84017100	1.09621300
Ν	1.69023500	0.74695200	1.10026100
Ν	-1.49257800	1.09283900	1.09790000
С	0.54518100	-2.88115700	0.60708000
С	2.21656700	1.91664800	0.61492600
С	-2.76748200	0.96785300	0.60839500
С	0.47367000	-4.14069200	1.22597600
С	3.33531100	2.48995200	1.24281100

С	-3.82267700	1.65710000	1.22983200
С	-0.34880500	-4.33779900	2.32561500
С	3.91184700	1.87883600	2.34677900
С	-3.58239100	2.46360300	2.33282700
С	-1.10733000	-3.26653600	2.80668900
С	3.36647700	0.68275200	2.82250700
С	-2.27535300	2.58351000	2.81420500
С	-1.00409800	-2.04300200	2.16009600
С	2.26268200	0.15523200	2.16754000
С	-1.26715000	1.88529900	2.16471800
Н	1.06458500	-4.96410400	0.83081400
Н	3.75077600	3.41621000	0.85188300
н	-4.83123000	1.55823100	0.83443000
н	-0.40484900	-5.31620300	2.80184200
н	4.78067400	2.32430500	2.83044200
н	-4.40185100	2.99902000	2.81136900
н	-1.77290000	-3.37378000	3.66090300
н	3.78858400	0.16138900	3.67937000
н	-2.03556800	3.21012400	3.67101000
н	-1.58020000	-1.17955800	2.48865800
н	1.80524900	-0.77800300	2.49186400
н	-0.23133800	1.95161100	2.49349100
С	-1.66912000	-0.46823700	-1.04520600
С	1.24109600	-1.21074900	-1.04479700
С	0.42986900	1.67982900	-1.04465700
С	1.35838600	-2.54877000	-0.55717500
С	1.52765800	2.45174200	-0.55400400
С	-2.88617700	0.09973100	-0.55764500
С	-4.11889800	-0.16350700	-1.18453900
С	2.20359600	-3.48426500	-1.18365100
С	1.91859700	3.64940600	-1.18234200
С	-4.17893200	-0.98878400	-2.29953800
С	2.94761800	-3.12357100	-2.29914400
С	1.23908700	4.11050600	-2.30200800
С	-2.99667100	-1.55544600	-2.79399100
С	2.84590900	-1.81661400	-2.79426000
С	0.15968300	3.36826200	-2.79938700
С	-1.77253000	-1.29947400	-2.17824800
С	2.01191400	-0.88469700	-2.17840500
С	-0.23348000	2.18188700	-2.18192800
н	2.28268700	-4.50204400	-0.79960600
Н	2.75965100	4.22718000	-0.79702600
н	-5.03966100	0.27768800	-0.80089700
Н	-5.13427200	-1.19131800	-2.78265800
Н	3.60107400	-3.84944300	-2.78203300
Н	1.54366200	5.03751100	-2.78675100
Н	-3.03359700	-2.20453800	-3.67051500
Н	3.42556500	-1.52409700	-3.67142700
Н	-0.37968300	3.72183100	-3.67974200
Н	-0.87052300	-1.75244500	-2.58869300

H 1.95236500 0.12272300 -2.58919300 H -1.07460700 1.62569900 -2.59467700 End

relativistic spinorbit zora

Basis Type TZP Core None End

AddDiffuseFit

SCF Iterations 300 End

XC HYBRID B3LYP End

EXACTDENSITY

Excitations Lowest 3 End

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 30 tol=1e-4 Subend End

End Input eor

Input file: B3LYP TDDFT (excited triplet geometry) spin-orbit perturbation calculation (pSOC-TDDFT) in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 (BP86/TZ2P T1 TDDFT optimised) T1 B3LYP TDDFT relativistic spin-orbit perturbation (gas phase)

lr	0.003252	-0.048694	-0.103035
Ν	-0.189849	-1.900377	0.997672
Ν	1.522436	0.759935	1.195369
N	-1.441397	1.159563	1.023909
С	0.619134	-2.906527	0.541933

С	2.126399	1.927958	0.664115
С	-2.728021	1.082233	0.564633
С	0.610327	-4.158288	1.178873
С	3.257829	2.450645	1.296550
С	-3.735419	1.856122	1.164028
С	-0.234662	-4.384743	2.256364
Ċ	3.817183	1.850943	2,420310
c	-3.425537	2.709799	2.213471
C	-1.071653	-3.352838	2.693211
c c	3 213544	0.646150	2 911668
c c	-2 103603	2 785196	2.511000
c c	-1 015567	-2 130787	2.000205
c c	2 105009	0 152106	2.030708
c c	1 1/15001	1 006504	2.208988
с u	-1.143001	1.990304	2.037704
	1.20/55/	-4.949155	0.822207
	3.711932	3.352/80	0.880005
н	-4.757354	1.787016	0.796474
н	-0.245281	-5.355073	2.752494
н	4.699725	2.2/1/65	2.89/8/4
н	-4.204044	3.316/12	2.676111
н	-1.756042	-3.488052	3.529032
H	3.611566	0.119041	3.///015
Н	-1.811274	3.447655	3.4/3204
Н	-1.641861	-1.292233	2.339277
Н	1.623156	-0.760871	2.615397
Н	-0.098292	2.015569	2.335414
С	-1.749427	-0.513190	-1.014506
С	1.278645	-1.193574	-1.093702
С	0.426537	1.688096	-1.102596
С	1.427263	-2.544406	-0.618098
С	1.488000	2.456860	-0.529996
С	-2.917166	0.157694	-0.550854
С	-4.170931	-0.088425	-1.137994
С	2.303619	-3.436223	-1.250925
С	1.857064	3.674545	-1.142302
С	-4.294039	-1.002679	-2.178222
С	3.044183	-3.025338	-2.357284
С	1.207942	4.126764	-2.289681
С	-3.158715	-1.686455	-2.631212
С	2.918245	-1.711123	-2.835876
С	0.169247	3.378483	-2.847767
С	-1.911843	-1.455391	-2.051025
С	2.064028	-0.811194	-2.210775
С	-0.216011	2.169127	-2.243820
H	2.417294	-4.457844	-0.886061
н	2.658234	4.278762	-0.713682
Н	-5.059156	0.435221	-0.782330
Н	-5.267384	-1.187778	-2.632386
н	3,723858	-3.723913	-2.845376
Н	1.512001	5.070267	-2.745542

```
H-3.247329-2.405761-3.447266H3.502553-1.392996-3.700486H-0.3441033.727678-3.744672H-1.042949-1.993624-2.428762H1.9802340.206890-2.587413H-1.0285491.592900-2.688761End
```

SOPERT Relativistic scalar ZORA

Basis Type TZP Core None End

AddDiffuseFit

SCF Iterations 300 End

XC HYBRID B3LYP End

EXACTDENSITY

Excitations Lowest 20 End

LOCORB end

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 30 tol=1e-4 Subend End

End Input eor

Input file: TDDFT (excited triplet geometry) state spin-orbit SCF calculation (SOC-TDDFT) in gas phase

\$ADFBIN/adf <<eor Title Ir(ppy)3 (BP86/TZ2P T1 TDDFT optimised) T1 B3LYP TDDFT relativistic spin-orbit SCF calculation

Ir	0.003252	-0.048694	-0.103035
N	-0.189849	-1.900377	0.997672
N	1.522436	0.759935	1.195369
N	-1.441397	1.159563	1.023909
С	0.619134	-2.906527	0.541933
С	2.126399	1.927958	0.664115
С	-2.728021	1.082233	0.564633
С	0.610327	-4.158288	1.178873
С	3.257829	2.450645	1.296550
С	-3.735419	1.856122	1.164028
С	-0.234662	-4.384743	2.256364
C	3.817183	1.850943	2.420310
C	-3.425537	2,709799	2.213471
C	-1.071653	-3.352838	2.693211
C	3.213544	0.646150	2.911668
c C	-2 103603	2 785196	2 660285
c c	-1 015567	-2 130787	2.000203
c c	2 105908	0 153106	2.050700
c c	-1 145001	1 996504	2.200500
н	1 267537	-4 949153	0 822207
н	3 711932	3 352786	0.886065
н	-// 75735/	1 787016	0.000000
 Ц	-4.757554	-5 255072	2 752/0/
н Ц	4 600725	2 271765	2.732434
п u	4.099723	2.271703	2.03/0/4
п u	1 756042	3.310712	2.070111
	-1.750042	-3.466052	3.529052
п 	3.011300	0.119041	3.777015
H	-1.811274	3.447655	3.473204
H		-1.292233	2.339277
H	1.023150	-0.760871	2.615397
H C	-0.098292	2.015569	2.335414
C	-1./4942/	-0.513190	-1.014506
C	1.2/8645	-1.193574	-1.093702
C	0.426537	1.688096	-1.102596
C	1.42/263	-2.544406	-0.618098
C	1.488000	2.456860	-0.529996
C	-2.91/166	0.157694	-0.550854
С	-4.170931	-0.088425	-1.137994
С	2.303619	-3.436223	-1.250925
С	1.857064	3.674545	-1.142302
С	-4.294039	-1.002679	-2.178222
С	3.044183	-3.025338	-2.357284
С	1.207942	4.126764	-2.289681
С	-3.158715	-1.686455	-2.631212
С	2.918245	-1.711123	-2.835876
С	0.169247	3.378483	-2.847767
С	-1.911843	-1.455391	-2.051025
С	2.064028	-0.811194	-2.210775

С -0.216011 2.169127 -2.243820 Н 2.417294 -4.457844 -0.886061 Н 2.658234 4.278762 -0.713682 Н -5.059156 0.435221 -0.782330 Н -5.267384 -1.187778 -2.632386 н 3.723858 -3.723913 -2.845376 1.512001 5.070267 -2.745542 Н -3.247329 -2.405761 -3.447266 Н Н 3.502553 -1.392996 -3.700486 н -0.344103 3.727678 -3.744672 -1.042949 -1.993624 -2.428762 Н Н 1.980234 0.206890 -2.587413 Н -1.028549 1.592900 -2.688761 End

relativistic spinorbit zora

Basis Type TZP Core None End

AddDiffuseFit

SCF Iterations 300 End

XC HYBRID B3LYP End

EXACTDENSITY

Excitations Lowest 3 End

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 30 tol=1e-4 Subend End

End Input Eor

2. Dielectric medium calculations

2.1 Geometry optimization

Input file: BP86 ground-state geometry optimization in dielectric medium

\$ADFBIN/adf <<eor

Title Ir(ppy)3 ground-state S0 geometry optimization (dielectric medium)

Ir	-0.00006000	0.00004200	-0.04113600	R=1.967
Ν	-0.19597300	-1.83826600	1.05964800	R=1.608
Ν	1.68997600	0.74860000	1.05959700	R=1.608
Ν	-1.49410200	1.08970300	1.05877200	R=1.608
С	0.55439300	-2.88044000	0.57267300	R=1.700
С	2.21651100	1.92040900	0.57390400	R=1.700
С	-2.77170900	0.96080200	0.57149600	R=1.700
С	0.49431700	-4.13753500	1.20069000	R=1.700
С	3.33566100	2.49622900	1.20172500	R=1.700
С	-3.83041300	1.64216300	1.19859800	R=1.700
С	-0.32076200	-4.33231400	2.30799000	R=1.700
С	3.91386600	1.88579700	2.30690300	R=1.700
С	-3.59173200	2.44686900	2.30492000	R=1.700
С	-1.08405000	-3.26146100	2.78674900	R=1.700
С	3.36958200	0.68793400	2.78372200	R=1.700
С	-2.28275000	2.57310900	2.78367600	R=1.700
С	-0.99229700	-2.04033600	2.13093600	R=1.700
С	2.26516300	0.15796600	2.12875800	R=1.700
С	-1.27102900	1.88198600	2.12893900	R=1.700
Н	1.08873500	-4.96070100	0.80749900	R=1.350
Н	3.75047700	3.42344800	0.80965400	R=1.350
Н	-4.84045800	1.53848600	0.80544900	R=1.350
Н	-0.36742200	-5.30849300	2.79208800	R=1.350
Н	4.78330000	2.33286200	2.79044000	R=1.350
Н	-4.41392700	2.97609800	2.78808000	R=1.350
Н	-1.74450500	-3.36701100	3.64656100	R=1.350
Н	3.79322500	0.16662800	3.64129100	R=1.350
Н	-2.04409400	3.19923800	3.64252700	R=1.350
Н	-1.57208200	-1.17743900	2.45753800	R=1.350
Н	1.80875600	-0.77657800	2.45394000	R=1.350
Н	-0.23377100	1.95336700	2.45527100	R=1.350
С	-1.66881600	-0.46760200	-1.08868300	R=1.700
С	1.23889300	-1.21188000	-1.08876400	R=1.700
С	0.42970300	1.67949400	-1.08807700	R=1.700
С	1.36024600	-2.54999900	-0.59906500	R=1.700
С	1.52698800	2.45409500	-0.59704300	R=1.700
С	-2.88828300	0.09677100	-0.59954200	R=1.700
С	-4.12122600	-0.16281800	-1.23079100	R=1.700
С	2.20116100	-3.48815100	-1.23059300	R=1.700

С	1.91863000	3.65226900	-1.22713400	R=1.700
С	-4.17867700	-0.98142700	-2.35265500	R=1.700
С	2.93709000	-3.12934400	-2.35389500	R=1.700
С	1.24043600	4.11052900	-2.35057100	R=1.700
С	-2.99385400	-1.54506300	-2.84892700	R=1.700
С	2.83167600	-1.82189500	-2.85124800	R=1.700
С	0.16190100	3.36503000	-2.84940800	R=1.700
С	-1.76983600	-1.29255400	-2.22825300	R=1.700
С	2.00196400	-0.88769000	-2.22981500	R=1.700
С	-0.23211700	2.17868000	-2.22919600	R=1.700
Н	2.28277100	-4.50646800	-0.84557600	R=1.350
Н	2.75894900	4.23238400	-0.84092500	R=1.350
Н	-5.04374000	0.27645800	-0.84628400	R=1.350
Н	-5.13382100	-1.18083300	-2.83989400	R=1.350
Н	3.58689900	-3.85705300	-2.84133100	R=1.350
Н	1.54540400	5.03765000	-2.83730400	R=1.350
Н	-3.02866500	-2.18863700	-3.73089400	R=1.350
Н	3.40482900	-1.53103200	-3.73451600	R=1.350
Н	-0.37610600	3.71625000	-3.73281400	R=1.350
Н	-0.86585600	-1.74263100	-2.64018700	R=1.350
Н	1.93905000	0.11998000	-2.64218200	R=1.350
Н	-1.07265100	1.62002600	-2.64254300	R=1.350
End				

Fragments

C t21.C H t21.H Ir t21.Ir N t21.N End

SOLVATION Surf Delley Solv Eps=3.5 Rad=5.4 Cav0=0.0 Cav1=0.0067639 Emp=0.5 Charged method=CONJ C-Mat Exact SCF VAR ALL LPRT END

Basis type TZ2P Core None End

XC GGA BP86 END

SCF

Iterations 200 End

GEOMETRY Optim Converge grad=0.0001 End

BECKEGRID Quality verygood End

RELATIVISTIC Scalar ZORA

End Input eor

Input file: BP86 TDDFT relativistic excited triplet state geometry optimization in dielectric medium

\$ADFBIN/adf <<eor

Title Ir(ppy)3 TDDFT excited triplet-state geometry optimization (dielectric medium)

Ir	-0.000984	-0.035476	-0.105798	R=1.967
Ν	-0.195980	-1.885639	1.005988	R=1.608
Ν	1.576982	0.729164	1.139289	R=1.608
Ν	-1.441173	1.148961	1.033911	R=1.608
С	0.608567	-2.894837	0.551657	R=1.700
С	2.136561	1.929311	0.633603	R=1.700
С	-2.727514	1.067801	0.576515	R=1.700
С	0.595772	-4.144705	1.191615	R=1.700
С	3.234554	2.495387	1.311589	R=1.700
С	-3.742371	1.809885	1.202151	R=1.700
С	-0.245910	-4.363257	2.272134	R=1.700
С	3.783614	1.901570	2.431604	R=1.700
С	-3.438288	2.638366	2.272224	R=1.700
С	-1.076381	-3.326414	2.709716	R=1.700
С	3.217448	0.669054	2.901941	R=1.700
С	-2.115243	2.719864	2.715731	R=1.700
С	-1.018511	-2.108012	2.048825	R=1.700
С	2.142314	0.143822	2.221543	R=1.700
С	-1.150412	1.960328	2.068731	R=1.700
Н	1.246799	-4.939583	0.835268	R=1.350
Н	3.656979	3.426275	0.933264	R=1.350
Н	-4.765605	1.733520	0.842010	R=1.350
Н	-0.259774	-5.331552	2.769977	R=1.350
Н	4.632521	2.355129	2.940867	R=1.350
Н	-4.222461	3.218712	2.756399	R=1.350
н	-1.756928	-3.455775	3.548338	R=1.350
Н	3.615009	0.148184	3.770494	R=1.350

```
н
     -1.830608 3.362118 3.546217 R=1.350
н
     -1.640850 -1.267741 2.351611 R=1.350
Н
     1.684177 -0.790689 2.546066 R=1.350
Н
     -0.104429 1.984194 2.366846 R=1.350
С
     -1.745002 -0.501594 -1.028583 R=1.700
С
     1.279252 -1.198803 -1.093885 R=1.700
С
     0.421180 1.692329 -1.110563 R=1.700
С
     1.417120 -2.543238 -0.610602 R=1.700
С
     1.510398 2.446934 -0.556988 R=1.700
С
     -2.912299 0.168562 -0.559649 R=1.700
С
     -4.163860 -0.062128 -1.156731 R=1.700
С
     2.291646 -3.444303 -1.236612 R=1.700
С
     1.901258 3.648637 -1.198071 R=1.700
С
     -4.284681 -0.960995 -2.210873 R=1.700
С
     3.036761 -3.043691 -2.341823 R=1.700
С
     1.240673 4.100195 -2.338007 R=1.700
С
     -3.151393 -1.645568 -2.667923 R=1.700
С
     2.921372 -1.731246 -2.825152 R=1.700
С
     0.169507 3.374163 -2.868467 R=1.700
С
     -1.906936 -1.429257 -2.076702 R=1.700
С
     2.068683 -0.823953 -2.205098 R=1.700
С
     -0.232301 2.179636 -2.241187 R=1.700
Н
     2.396757 -4.463892 -0.866590 R=1.350
н
     2.730150 4.235800 -0.800690 R=1.350
н
     -5.051225 0.459873 -0.799149 R=1.350
     -5.256099 -1.134079 -2.672641 R=1.350
Н
Н
     3.711449 -3.748801 -2.825996 R=1.350
Н
     1.562801 5.027399 -2.814456 R=1.350
Н
     -3.240449 -2.352810 -3.493605 R=1.350
н
     3.508601 -1.420591 -3.689759 R=1.350
Н
     -0.351032 3.725685 -3.759848 R=1.350
     -1.038994 -1.967701 -2.455466 R=1.350
н
н
     1.990902 0.192418 -2.587353 R=1.350
н
     -1.065696 1.617486 -2.663851 R=1.350
End
Fragments
C t21.C
H t21.H
lr t21.lr
N t21.N
End
SOLVATION
 Surf Delley
 Solv Eps=3.5 Rad=5.4 Cav0=0.0 Cav1=0.0067639 Emp=0.5
 Charged method=CONJ
 C-Mat Exact
 SCF VAR ALL
END
```

RELATIVISTIC Scalar ZORA

Basis type TZ2P Core None End

XC

GGA BP86 END

SCF Iterations 200 End

GEOMETRY Optim Converge grad=0.0001 End

EXCITATIONS Onlytrip Lowest 1 END

EXCITEDGO State A 1 Triplet END

BECKEGRID Quality verygood End

End Input eor

Input file: BP86 UDFT triplet-state geometry optimization in dielectric medium

\$ADFBIN/adf <<eor Title Ir(ppy)3 UDFT triplet-state geometry optimization (dielectric medium)

Ato	ms			
lr	0.00172000	-0.00115700	-0.08262300	R=1.967
Ν	-0.20948700	-1.81457400	1.05945600	R=1.608
Ν	1.66865800	0.72542800	1.06252800	R=1.608
Ν	-1.46036000	1.08457500	1.06545100	R=1.608
С	0.55213100	-2.86778800	0.57957200	R=1.700

С	2.19974700	1.91399000	0.58228900	R=1.700
С	-2.75286100	0.96070500	0.58253600	R=1.700
С	0.52867400	-4.10382200	1.25700800	R=1.700
С	3.27206400	2.51949700	1.26969700	R=1.700
С	-3.80979400	1.59763800	1.26407800	R=1.700
С	-0.27683700	-4.28318800	2.36667600	R=1.700
С	3.82200900	1.91869600	2.38661800	R=1.700
С	-3.56081200	2.37252600	2.38220000	R=1.700
С	-1.07419500	-3.21009800	2.81410800	R=1.700
С	3.29377900	0.68846700	2.83243400	R=1.700
С	-2.23326500	2.51512700	2.83451300	R=1.700
С	-1.00136800	-2.00584700	2.13368200	R=1.700
С	2.22393400	0.14180200	2.14382400	R=1.700
С	-1.22845300	1.85284000	2.14898900	R=1.700
н	1.15234700	-4.92002700	0.89784600	R=1.350
н	3.66422900	3.46972300	0.91247800	R=1.350
н	-4.82848500	1.47350300	0.90220600	R=1.350
н	-0.29412600	-5.24051900	2.88552800	R=1.350
н	4.65100700	2.38924700	2.91327500	R=1.350
н	-4.38006900	2.86488100	2.90425500	R=1.350
н	-1.73453900	-3.30734800	3.67296400	R=1.350
н	3.70326300	0.16945300	3.69621300	R=1.350
н	-1.98631900	3.12544700	3.70038000	R=1.350
н	-1.58920300	-1.14447900	2.44727900	R=1.350
н	1.77414100	-0.79968300	2.45573700	R=1.350
н	-0.18863800	1.92318200	2.46471100	R=1.350
С	-1.67920000	-0.47602100	-1.09098100	R=1.700
С	1.25424600	-1.21435200	-1.09166800	R=1.700
С	0.42469500	1.68722700	-1.09569100	R=1.700
С	1.32517400	-2.56712600	-0.60651000	R=1.700
С	1.56146200	2.42614400	-0.60945700	R=1.700
С	-2.88191400	0.14658200	-0.60768900	R=1.700
С	-4.11105000	-0.08004400	-1.26331700	R=1.700
С	2.14543700	-3.51219900	-1.25917400	R=1.700
С	1.97481200	3.60422800	-1.26905600	R=1.700
С	-4.17592100	-0.92522500	-2.36359600	R=1.700
С	2.90788000	-3.14125500	-2.35936500	R=1.700
С	1.27614300	4.07349300	-2.37369400	R=1.700
С	-3.01477500	-1.56811800	-2.82460000	R=1.700
С	2.87293200	-1.81543800	-2.82423700	R=1.700
С	0.14370200	3.38130400	-2.83747900	R=1.700
С	-1.79230900	-1.35032200	-2.18784500	R=1.700
С	2.06553000	-0.87096000	-2.18968400	R=1.700
С	-0.27501700	2.21436700	-2.19728500	R=1.700
н	2.18808900	-4.54254200	-0.90581200	R=1.350
н	2.84705800	4.15575000	-0.91792700	R=1.350
н	-5.02113300	0.40672500	-0.91245300	R=1.350
Н	-5.12911300	-1.09065200	-2.86575200	R=1.350
н	3.53484500	-3.87981100	-2.85888100	R=1.350
н	1.60637500	4.98126900	-2.87875200	R=1.350

```
Н
    -3.06752500
                  -2.23287600
                                -3.68757200
                                              R=1.350
Н
    3.47274200
                 -1.52606000
                                -3.68781900
                                              R=1.350
Н
    -0.40325200
                  3.75278800
                                -3.70468100
                                              R=1.350
                                              R=1.350
Н
    -0.89809600
                -1.84371900
                                -2.56751800
Н
    2.03706600
                  0.14918500
                                -2.57123700
                                              R=1.350
н
    -1.14472300
                  1.67967900
                                -2.57782000
                                              R=1.350
End
Fragments
C t21.C
H t21.H
lr t21.lr
N t21.N
End
SOLVATION
 Surf Delley
 Solv Eps=3.5 Rad=5.4 Cav0=0.0 Cav1=0.0067639 Emp=0.5
 Charged method=CONJ
 C-Mat Exact
 SCF VAR ALL
END
RELATIVISTIC Scalar ZORA
Unrestricted
Charge 0 2
Basis
type TZ2P
Core None
End
XC
GGA BP86
END
SCF
Iterations 200
End
GEOMETRY
Optim
Converge grad=0.0001
End
BECKEGRID
Quality verygood
End
```

End Input eor

2.2 Single-point DFT/UDFT calculations

Input file: BP86 DFT single-point energy calculation in dielectric medium

\$ADFBIN/adf <<eor

Title Ir(ppy)3 (BP86/TZ2P TDDFT-gas phase optimized T1) B3LYP/TZP single-point energy calculation in dielectric medium

lr	0.003252	-0.048694	-0.103035 R=1.967
Ν	-0.189849	-1.900377	0.997672 R=1.608
Ν	1.522436	0.759935	1.195369 R=1.608
Ν	-1.441397	1.159563	1.023909 R=1.608
С	0.619134	-2.906527	0.541933 R=1.700
С	2.126399	1.927958	0.664115 R=1.700
С	-2.728021	1.082233	0.564633 R=1.700
С	0.610327	-4.158288	1.178873 R=1.700
С	3.257829	2.450645	1.296550 R=1.700
С	-3.735419	1.856122	1.164028 R=1.700
С	-0.234662	-4.384743	2.256364 R=1.700
С	3.817183	1.850943	2.420310 R=1.700
С	-3.425537	2.709799	2.213471 R=1.700
С	-1.071653	-3.352838	2.693211 R=1.700
С	3.213544	0.646150	2.911668 R=1.700
С	-2.103603	2.785196	2.660285 R=1.700
С	-1.015567	-2.130787	2.036768 R=1.700
С	2.105908	0.153106	2.268988 R=1.700
С	-1.145001	1.996504	2.037704 R=1.700
Н	1.267537	-4.949153	0.822207 R=1.350
Н	3.711932	3.352786	0.886065 R=1.350
Н	-4.757354	1.787016	0.796474 R=1.350
Н	-0.245281	-5.355073	2.752494 R=1.350
Н	4.699725	2.271765	2.897874 R=1.350
Н	-4.204044	3.316712	2.676111 R=1.350
Н	-1.756042	-3.488052	3.529032 R=1.350
Н	3.611566	0.119041	3.777015 R=1.350
Н	-1.811274	3.447655	3.473204 R=1.350
Н	-1.641861	-1.292233	2.339277 R=1.350
Н	1.623156	-0.760871	2.615397 R=1.350
Н	-0.098292	2.015569	2.335414 R=1.350
С	-1.749427	-0.513190	-1.014506 R=1.700
С	1.278645	-1.193574	-1.093702 R=1.700
С	0.426537	1.688096	-1.102596 R=1.700
С	1.427263	-2.544406	-0.618098 R=1.700
С	1.488000	2.456860	-0.529996 R=1.700

```
С
     -2.917166 0.157694 -0.550854 R=1.700
С
     -4.170931 -0.088425 -1.137994 R=1.700
С
     2.303619 -3.436223 -1.250925 R=1.700
С
     1.857064 3.674545 -1.142302 R=1.700
С
     -4.294039 -1.002679 -2.178222 R=1.700
С
     3.044183 -3.025338 -2.357284 R=1.700
С
     1.207942 4.126764 -2.289681 R=1.700
С
     -3.158715 -1.686455 -2.631212 R=1.700
С
     2.918245 -1.711123 -2.835876 R=1.700
С
     0.169247 3.378483 -2.847767 R=1.700
С
     -1.911843 -1.455391 -2.051025 R=1.700
С
     2.064028 -0.811194 -2.210775 R=1.700
С
     -0.216011 2.169127 -2.243820 R=1.700
Н
     2.417294 -4.457844 -0.886061 R=1.350
     2.658234 4.278762 -0.713682 R=1.350
н
Н
     -5.059156 0.435221 -0.782330 R=1.350
Н
     -5.267384 -1.187778 -2.632386 R=1.350
Н
     3.723858 -3.723913 -2.845376 R=1.350
Н
     1.512001 5.070267 -2.745542 R=1.350
н
     -3.247329 -2.405761 -3.447266 R=1.350
     3.502553 -1.392996 -3.700486 R=1.350
Н
Н
     -0.344103 3.727678 -3.744672 R=1.350
н
     -1.042949 -1.993624 -2.428762 R=1.350
н
     1.980234 0.206890 -2.587413 R=1.350
Н
     -1.028549 1.592900 -2.688761 R=1.350
End
Fragments
C t21.C
H t21.H
lr t21.lr
N t21.N
End
SOLVATION
  Surf Delley
  Solv eps=3.5 rad=5.4 cav0=0.0 cav1=0.0067639 Emp=0.5
  Charged method=CONJ
  C-Mat Exact
  SCF VAR ALL
END
Relativistic scalar ZORA
Basis
Type TZP
Core None
End
XC
```

HYBRID B3LYP END

End Input eor

2.3 TDDFT excited state energy calculations

Input file: TDDFT relativistic spin-orbit perturbation calculation in dielectric medium

\$ADFBIN/adf <<eor Title Ir(ppy)3 (T1 gas-phase optimized TDDFT BP86/TZ2P) B3LYP TDDFT relativistic spin-orbit perturbation in dielectric medium

Ir	0.003252	-0.048694	-0.103035 R=1.967
Ν	-0.189849	-1.900377	0.997672 R=1.608
Ν	1.522436	0.759935	1.195369 R=1.608
Ν	-1.441397	1.159563	1.023909 R=1.608
С	0.619134	-2.906527	0.541933 R=1.700
С	2.126399	1.927958	0.664115 R=1.700
С	-2.728021	1.082233	0.564633 R=1.700
С	0.610327	-4.158288	1.178873 R=1.700
С	3.257829	2.450645	1.296550 R=1.700
С	-3.735419	1.856122	1.164028 R=1.700
С	-0.234662	-4.384743	2.256364 R=1.700
С	3.817183	1.850943	2.420310 R=1.700
С	-3.425537	2.709799	2.213471 R=1.700
С	-1.071653	-3.352838	2.693211 R=1.700
С	3.213544	0.646150	2.911668 R=1.700
С	-2.103603	2.785196	2.660285 R=1.700
С	-1.015567	-2.130787	2.036768 R=1.700
С	2.105908	0.153106	2.268988 R=1.700
С	-1.145001	1.996504	2.037704 R=1.700
н	1.267537	-4.949153	0.822207 R=1.350
Н	3.711932	3.352786	0.886065 R=1.350
н	-4.757354	1.787016	0.796474 R=1.350
Н	-0.245281	-5.355073	2.752494 R=1.350
Н	4.699725	2.271765	2.897874 R=1.350
Н	-4.204044	3.316712	2.676111 R=1.350
Н	-1.756042	-3.488052	3.529032 R=1.350
Н	3.611566	0.119041	3.777015 R=1.350
Н	-1.811274	3.447655	3.473204 R=1.350
Н	-1.641861	-1.292233	2.339277 R=1.350
Н	1.623156	-0.760871	2.615397 R=1.350
Н	-0.098292	2.015569	2.335414 R=1.350
С	-1.749427	-0.513190	-1.014506 R=1.700
С	1.278645	-1.193574	-1.093702 R=1.700

```
С
     0.426537 1.688096 -1.102596 R=1.700
С
     1.427263 -2.544406 -0.618098 R=1.700
С
     1.488000 2.456860 -0.529996 R=1.700
С
     -2.917166 0.157694 -0.550854 R=1.700
С
     -4.170931 -0.088425 -1.137994 R=1.700
С
     2.303619 -3.436223 -1.250925 R=1.700
С
     1.857064 3.674545 -1.142302 R=1.700
С
     -4.294039 -1.002679 -2.178222 R=1.700
С
     3.044183 -3.025338 -2.357284 R=1.700
С
     1.207942 4.126764 -2.289681 R=1.700
С
     -3.158715 -1.686455 -2.631212 R=1.700
С
     2.918245 -1.711123 -2.835876 R=1.700
С
     0.169247 3.378483 -2.847767 R=1.700
С
     -1.911843 -1.455391 -2.051025 R=1.700
С
     2.064028 -0.811194 -2.210775 R=1.700
С
     -0.216011 2.169127 -2.243820 R=1.700
Н
     2.417294 -4.457844 -0.886061 R=1.350
Н
     2.658234 4.278762 -0.713682 R=1.350
Н
     -5.059156 0.435221 -0.782330 R=1.350
н
     -5.267384 -1.187778 -2.632386 R=1.350
     3.723858 -3.723913 -2.845376 R=1.350
Н
Н
     1.512001 5.070267 -2.745542 R=1.350
     -3.247329 -2.405761 -3.447266 R=1.350
н
н
     3.502553 -1.392996 -3.700486 R=1.350
н
     -0.344103 3.727678 -3.744672 R=1.350
     -1.042949 -1.993624 -2.428762 R=1.350
Н
Н
     1.980234 0.206890 -2.587413 R=1.350
Н
     -1.028549 1.592900 -2.688761 R=1.350
End
Fragments
C t21.C
H t21.H
lr t21.lr
N t21.N
End
SOLVATION
  Surf Delley
  Solv eps=3.5 rad=5.4 Negl=3.2 cav0=0.0 cav1=0.0067639 Emp=0.5
  Charged method=CONJ
  C-Mat Exact
  SCF VAR ALL
END
SOPERT NCALC=3
Relativistic scalar ZORA
```

Basis

Type TZP

Core None End

AddDiffuseFit

SCF Iterations 300 End

XC HYBRID B3LYP End

EXACTDENSITY

Excitations Lowest 20 NTO End

LOCORB end

EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 30 tol=1e-4 Subend End

End Input Eor

Input file: TDDFT excited triplet state spin-orbit SCF calculation (SOC-TDDFT) in dielectric medium

\$ADFBIN/adf <<eor Title Ir(ppy)3 (T1 gas-phase optimized TDDFT BP86/TZ2P) B3LYP TDDFT relativistic spin-orbit SCF in dielectric medium

Atoms Ir 0.003252 -0.048694 -0.103035 R=1.967 Ν -0.189849 -1.900377 0.997672 R=1.608 1.522436 0.759935 1.195369 R=1.608 Ν Ν -1.441397 1.159563 1.023909 R=1.608 С 0.619134 -2.906527 0.541933 R=1.700 С 2.126399 1.927958 0.664115 R=1.700 С -2.728021 1.082233 0.564633 R=1.700 С 0.610327 -4.158288 1.178873 R=1.700 С 3.257829 2.450645 1.296550 R=1.700 С -3.735419 1.856122 1.164028 R=1.700

С	-0.234662	-4.384743	2.256364 R=1.700
С	3.817183	1.850943	2.420310 R=1.700
С	-3.425537	2.709799	2.213471 R=1.700
С	-1.071653	-3.352838	2.693211 R=1.700
С	3.213544	0.646150	2.911668 R=1.700
С	-2.103603	2.785196	2.660285 R=1.700
С	-1.015567	-2.130787	2.036768 R=1.700
С	2.105908	0.153106	2.268988 R=1.700
С	-1.145001	1.996504	2.037704 R=1.700
н	1.267537	-4.949153	0.822207 R=1.350
н	3.711932	3.352786	0.886065 R=1.350
н	-4.757354	1.787016	0.796474 R=1.350
Н	-0.245281	-5.355073	2.752494 R=1.350
Н	4.699725	2.271765	2.897874 R=1.350
н	-4.204044	3.316712	2.676111 R=1.350
н	-1.756042	-3.488052	3.529032 R=1.350
н	3.611566	0.119041	3.777015 R=1.350
н	-1.811274	3.447655	3.473204 R=1.350
н	-1.641861	-1.292233	2.339277 R=1.350
н	1.623156	-0.760871	2.615397 R=1.350
н	-0.098292	2.015569	2.335414 R=1.350
C	-1.749427	-0.513190	-1.014506 R=1.700
c C	1 278645	-1 193574	-1 093702 R=1 700
c C	0 426537	1 688096	-1 102596 R=1 700
c C	1 427263	-2 544406	-0 618098 R=1 700
c c	1 488000	2.511100	-0 529996 R=1 700
C	-2.917166	0.157694	-0.550854 R=1.700
c C	-4 170931	-0 088425	-1 137994 R=1 700
c c	2 303619	-3 436223	-1 250925 R=1 700
c c	1 857064	3 674545	-1 142302 R=1 700
c c	-4 294039	-1 002679	-2 178222 R=1 700
c c	3 044183	-3 025338	-2 357284 R=1 700
c c	1 207942	A 126764	-2 289681 R=1 700
c c	-3 158715	-1 686455	-2 631212 R=1 700
c c	2 918245	-1 711173	-2 835876 R=1 700
c c	0 169247	2 278/82	-2 847767 R=1 700
c c	-1 9118/13	-1 455391	-2 051025 R=1 700
c c	2 064028	-0 811194	-2 210775 R=1 700
c c	-0 216011	2 169127	-2 243820 R=1 700
н	2 417294	-4 457844	-0 886061 R=1 350
н	2.417234	4 278762	-0 713682 R=1 350
н	-5 059156	n //25221	-0 782330 R-1 350
н	-5 267384	-1 187778	-0.782330 R=1.330
н	3 723858	-2 722012	-2 845376 R=1 350
н	1 512001	5.070267	-2 7/155/12 R-1 350
н	-3 2/7220	-2 <u>105761</u>	-3 447766 P-1 250
н	2 507552	_1 202004	-3 700/86 P-1 250
н	-0 3//102	2 727670	-3 744672 R-1 250
н	-1 0/20/0	-1 002674	-7 178767 P-1 20
ц	1 090724	-1.333024 0 206000	-2.420/02 N-1.330
11	1.300234	0.200090	-2.201412 U-1.220

-1.028549 1.592900 -2.688761 R=1.350 Н End Fragments C t21.C H t21.H lr t21.lr N t21.N End SOLVATION Surf Delley Solv eps=3.5 rad=5.4 Negl=3.2 cav0=0.0 cav1=0.0067639 Emp=0.5 Charged method=CONJ C-Mat Exact SCF VAR ALL END relativistic spinorbit zora Basis Type TZP Core None End AddDiffuseFit SCF Iterations 300 End ΧС HYBRID B3LYP End EXACTDENSITY Excitations Lowest 3 NTO End EPRINT SFO OrbPop GrossPop FragPop FragPop Gross Orbpop 90 30 tol=1e-4 Subend End

	SO	T1	(SO-T1)
lr-N1	2.173	2.195	-0.022
Ir-N2	2.172	2.089	0.083
Ir-N3	2.173	2.251	-0.078
lr-C1	2.030	1.981	0.049
lr-C2	2.030	2.048	-0.019
lr-C3	2.030	2.066	-0.036

Table S1: Selected bond lengths of Ir(ppy)3 (in Å) in the S0 and T1 optimized geometries at B3LYP/TZ2P level of theory

Table S2: Comparison of the selected bond lengths of $Ir(ppy)_3$ (in Å) in the T_1 optimized in *vacuo* and in the dielectric medium (ϵ =3.5) at UDFT/BP86/TZ2P level of theory

	in <i>vacuo</i>	dielectric medium
Ir-N1	2.150	2.149
Ir-N2	2.153	2.153
Ir-N3	2.153	2.153
lr-C1	2.014	2.014
Ir-C2	2.015	2.015
lr-C3	2.016	2.017

Table S3: Emission energies and radiative lifetimes of $Ir(ppy)_3$ in gas phase for individual substates in S₀ and T₁ structures at BP86 and B3LYP

Geometry optimization		TDDFT cale	TDDFT calculation Emission (eV)		V)	Radiative lifetimes (s)				
Functional	Basis set	Spin state	Functional	Basis set	T _{1,1}	T _{1,2}	T _{1,3}	T _{1,1}	T _{1,2}	T _{1,3}
BP86	TZ2P	Singlet	B3LYP	TZP	2.500	2.506	2.507	0.432 × 10 ⁻³	0.224 × 10 ⁻⁵	0.214 × 10 ⁻⁵
BP86	TZ2P	Singlet	BP86	TZP	1.990	2.004	2.004	0.862 × 10 ⁻²	0.281 × 10 ⁻⁵	0.275 × 10⁻⁵
B3LYP	TZ2P	Singlet	B3LYP	TZP	2.546	2.551	2.551	0.205 × 10 ⁻³	0.257 × 10 ⁻⁵	0.311 × 10 ⁻⁵
B3LYP	TZ2P	Singlet	BP86	TZP	2.005	2.018	2.018	0.133 × 10 ⁻¹	0.278 × 10 ⁻⁵	0.274 × 10 ⁻⁵
BP86	TZ2P	Triplet	B3LYP	TZP	2.000	2.001	2.015	0.160 × 10 ⁻²	0.124 × 10 ⁻⁴	0.330 × 10⁻⁵
BP86	TZ2P	Triplet	BP86	TZP	1.524	1.528	1.534	0.736 × 10 ⁻²	0.267 × 10 ⁻⁴	0.843 × 10⁻⁵
B3LYP	TZ2P	Triplet	BP86	TZP	1.504	1.508	1.513	0.805 × 10 ⁻²	0.331 × 10 ⁻⁴	0.903 × 10⁻⁵
B3LYP	TZ2P	Triplet	B3LYP	TZP	1.885	1.889	1.898	0.173 × 10 ⁻²	0.321 × 10 ⁻⁴	0.505 × 10 ⁻⁵

Figure S1: Degree of charge transfer for emission process (charge in ground state minus charge in excited triplet state) in $Ir(ppy)_3$ on the iridium atom and the three ligands as a function of number of electrons in the active space based on S₀ geometry