Supplementary Information for:

Energetics of Exciton Binding and Dissociation in Conjugated

Polymers: A Tight Binding Approach

Joel H. Bombile, Michael J. Janik, Scott T. Milner.

Coulomb integral between two smeared charge distributions

We evaluate the Coulomb integral between two smeared charge distributions, represented as threedimensional Gaussians given by

$$\rho(r) = q_0 \frac{e^{r^2/(2\sigma)^2}}{(2\pi\sigma)^{3/2}} \tag{1}$$

where σ is the characteristic size (radius), and q_0 the elementary charge. The integral for such charge distributions located at site *i* and *j*, $E_C(i, j)$, is given by

$$E_C(i,j) = \int dr \int dr' \frac{\rho_i(r)\rho_j(r')}{|r-r'|}$$

= $\frac{1}{r} \operatorname{erf}\left(\frac{r}{2\sigma}\right)$ (2)

where the latter result is obtained by evaluating the integral in Fourier space. Evidently $E_C(i, j)$ only depends on the distance r between sites i and j, and the characteristic width σ of the smeared charge distribution ρ . Figure S1 displays this result as a dimensionless function of r/σ , in units of the energy scale $U_0 = q_0^2/(4\pi\epsilon_0\sigma)$. A deviation from the 1/r potential is seen for interactions involving smeared charges that are two sites or less apart.

Figure S1: Interaction energy between two Gaussian charge distributions separated by r. Solid curve is Equation 2; dashed curve is 1/r, valid at large separations.

Figure S2: Attractive force (slope of bare Coulomb potential) between the two carriers as a function of hole-electron distance.