Supporting Information

For

Aromaticity *versus* Regioisomeric Effect of β-Substituents in Porphyrinoids

Yuhang Yao,^{†,§} Yu Rao,^{†,§} Yiwei Liu,[†] Liang Jiang,[‡] Jin Xiong,[†] Yingjie Fan,[†] Zhen Shen,^{*‡} Jonathan L. Sessler^{*,#,Δ} and Jun-Long Zhang^{*,†}

[†]Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

[‡]State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

[#]Institute for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai, 200444, P. R. China

^aDepartment of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA

Outline

1. Synthesis and characterization.	4
General information.	4
Synthesis.	5
Analysis of the <i>cis</i> isomer product in 1,3-dipolar cycloaddition	10
2. Photophysical properties, electrochemistry measurement and comp details.	utation 11
Electrochemistry measurement.	11
X-ray diffraction measurement.	11
Computational details.	12
3. Supporting Tables and Figures.	13
Table S1-S3. Crystal data and structure refinements.	13
Table S4-S6. Average length and standard deviations of selected che for 3-5.	mical bonds 16
Table S7. Photophysical and electrochemical data for the 1-5 .	20
Table S8. Reversibility of redox waves in <i>cis</i> - 3 with different scan rate measurements.	of CV 21
Table S9. Change in the NICS(1) values in the middle ring and the sul	b -rings. 22
Table S10. Chemical shift values for the β -H signals and ΔQ_L absorpti compounds discussed in this paper.	on values for 23
Figure S1-S8. ¹ H NMR spectra	24
Figure S9-S16. ¹³ C NMR spectra	28
Figure S17-S24. ¹⁹ F NMR spectra.	
Figure S25-S32. HR-MS (ESI).	36
Figure S33-S40. FT-IR spectra.	40
Figure S41-S50. COSY and NOSEY spectra.	44
Figure S51-S56. X-ray structures.	54
Figure S57-S60. Normalized excitation spectra.	57
Figure S61-S68. Lifetime measurements.	59
Figure S69-S70. Absolute quantum yields	67
Figure S77-S80. Cyclic Voltammograms.	71
Figure S81. Cyclic Voltammograms of <i>cis-</i> 3 in DCM with different scar	ו rates. 73
Figure S82. Average NICS(1) value vs average $\delta_{\beta-Hs}$ for 1-5 in this wo	rk. 73

	Figure S83. Correlation between regioisomeric effect and aromaticity estimated average chemical shifts of N-Hs in cis/trans-isomers.	by .74
	Figure S84. Correlation between regioisomeric effect and aromaticity estimated laverage chemical shifts of β -Hs in cis/trans-isomers.	by .74
	Figure S86. Observed Q band energy <i>versus</i> the calculated HOMO–LUMO gap 1-5	in .75
	Figure S87. The experimental Q band wavelength <i>versus</i> the theoretical Q band wavelength in 1-5 .	l .76
	Figure S88. The oscillator strength, f , of the Q _L band <i>versus</i> the calculated Δ HOMO in 1-5 .	.76
	Figure S89. HOMO-LUMO gap at the optimized S ₀ geometries $vs Q_L(0,0)$ band f 1-5 in this work.	or .77
4.	Reference:	.78

1. Synthesis and characterization.

General information.

All reagents and materials were purchased from commercial suppliers and used as received unless otherwise indicated. All photographs were taken using a Nikon D5300 camera. UV-vis spectra were recorded on an Agilent 8453 UV-vis spectrometer equipped with an Agilent 89090A thermostat (± 0.1 °C). ESI-MS spectra were recorded on Bruker APEX IV Fourier Transform Ion Cyclotron Resonance Mass Spectrometer using electrospray ionization. Mass spectrometric simulations were carried out using the IsoPro v3.0 package. MALDI-TOF-MS were recorded on an AB Sciex 5800 MALDI-TOF/TOF mass spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker-400 MHz instrument, ¹⁹F NMR spectra were recorded on a Bruker-500 MHz instrument. ¹H and ¹³C NMR spectra were referenced to tetramethylsilane as an internal standard. For the ¹⁹F NMR spectra, trifluoroacetic acid (-77.5 ppm) was used as an external reference. 2D-NMR (COSY and NOSEY) experiments were carried out using a Bruker-500 MHz instrument using CDCl₃ as the solvent. Fluorescence spectra were recorded on a NanoLog FL3-2iHR infrared fluorescence spectrometer or an UltraFast Lifetime Spectrofluorometer (Delta Flex), while lifetime and steady state spectra were recorded using FLS-920 and FLS-980 spectrometers. The absolute quantum yields were determined using an integrating sphere on the FLS-980 spectrometer. IR spectra were recorded on a Tensor 27 FTIR or a Spectrum Spotlight 200 FT-IR microscopic.

Synthesis.

Meso-tetrakispentafluorophenylporphyrin, cis- and trans-porphodilactone

Scheme S1. Synthetic procedure used to prepare the control system F20 Porphyrin Meso-tetrakispentafluorophenylporphyrin (F₂₀ Porphyrin) was synthesized according to the literature as shown in Scheme S1.¹

Scheme S2. Synthetic procedure of cis/trans-1

cis-Porphodilactone (*cis*-1) and *trans*-porphodilactone (*trans*-1) were synthesized and separated according to the literature as shown in Scheme S2.²

Synthesis of 2.

Scheme S3. Synthetic procedure of cis/trans-2

Cis-1 or *trans*-1 was dissolved in dry THF. Excess DIBAL-H (0.1 M in hexanes) was added under nitrogen at -78 °C.³ Then, the solution was allowed to warm to room temperature and to react for 2 hours. After this point in time, water was added into the reaction mixture. Purification on a silica gel column using ethyl acetate (EA) /petroleum ether (PE) (1:5) as an eluent yielded *cis*- and *trans*-2.

Cis-**2**: yield 90%; ¹H NMR (400 MHz, Chloroform-d) δ 8.18 (s, 2H), 7.66 (d, *J* = 2.1 Hz, 2H), 7.44 (d, *J* = 10.1 Hz, 2H), 3.72 (t, *J* = 10.8 Hz, 2H), 1.25 (s, 1H), 0.79 (s, 1H).

¹⁹F NMR (377 MHz, Chloroform-d) δ -135.39 (ddd, J = 24.5, 16.0, 8.2 Hz), -137.28 – -137.96 (m), -140.02 (dd, J = 24.0, 8.6 Hz), -151.92 (td, J = 21.1, 9.0 Hz), -152.20 (t, J = 20.8 Hz), -161.26 (ddtt, J = 67.5, 29.6, 22.5, 7.8 Hz). MALDI-TOF-MS m/z: Calcd. For C₄₂H₁₀F₂₀N₄O₄ [M+H]⁺ 1014.037721, found 1014.036329. IR (cm⁻¹): 1261, 1089, 1018, 914, 798, 755, 730, 719. UV-Vis absorption (CH₂Cl₂): λ_{max} (lg ε) = 346 (4.93), 378 (5.03), 443 (3.83), 470 (3.97), 502 (4.44), 606 (3.67), 659 (4.02), 722 (4.56).

Trans-**2**: yield 90%; ¹H NMR (400 MHz, Chloroform-d) δ 8.36 (d, *J* = 4.2 Hz, 2H), 8.28 (d, *J* = 4.5 Hz, 2H), 7.78 (d, *J* = 9.6 Hz, 2H), 4.03 (d, *J* = 9.9 Hz, 2H), -1.35 (s, 2H). ¹⁹F NMR (377 MHz, Chloroform-d) δ -135.01 (dd, *J* = 25.0, 9.5 Hz), -137.57, -137.82, -139.40 (dd, *J* = 23.9, 8.1 Hz), -139.60 (dd, *J* = 24.6, 8.1 Hz), -151.56 (t, *J* = 21.0 Hz), -152.44 (td, *J* = 21.0, 9.7 Hz), -160.87, -161.12, -161.34 – -161.95 (m). MALDI-TOF-MS m/z: Calcd. For $C_{42}H_{10}F_{20}N_4O_4$ [M+H]⁺ 1014.037721, found 1014.038852. IR (cm⁻¹): 1519, 1498. UV-Vis absorption (CH₂Cl₂): λ_{max} (lg ε) = 345 (4.91), 382 (4.98), 450 (3.46), 478 (3.58), 510 (4.37), 689 (3.65), 750 (4.81).

Synthesis of 3.

Scheme S4. Synthetic procedure leading to cis- and trans-3

Cis-1 or *trans*-1 (0.015 mmol) was dissolved in dry toluene along with 6 mg (0.067 mmol) sarcosine and 2.6 mg (0.087 mmol) paraformaldehyde.⁴ This purple solution was heated at 105 °C and stirred for 12 h in a Schleck tube under N₂. During this time the color of the mixture changed to orange. This reaction was monitored by observing the solution under a UV lamp at 365 nm. Purification was carried out on a small silica gel column using CH₂Cl₂/PE (1:1) as the eluent. This gave unreacted *cis*-1 or *trans*-1; then, using dichloromethane as an eluent, *cis*- and *trans*-3 were obtained.

Cis-**3**: yield 57%; ¹H NMR (400 MHz, Chloroform-d) δ 7.23 (d, *J* = 2.1 Hz, 2H), 6.53 (s, 1H), 5.45 (s, 1H), 4.35 (d, *J* = 3.7 Hz, 2H), 2.73 (s, 2H), 2.53 (d, *J* = 3.2 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 159.6 – 159.4, 158.8, 134.9, 127.9, 121.7, 112.8, 85.0, 61.5, 47.6, 40.7. ¹⁹F NMR (471 MHz, Chloroform-d) δ - 135.54 (dd, *J* = 24.9, 8.5 Hz), -138.25 – -138.71 (m), -139.32 (d, *J* = 18.5 Hz), -150.00, -151.33, -159.48 (d, *J* = 8.5 Hz), -159.69 (d, *J* = 8.0 Hz), -160.80 – -161.30 (m). ESI-MS m/z: Calcd. For C₄₅H₁₄F₂₀N₅O₄ [M+H]⁺ 1068.072095, found 1068.071241. IR (cm⁻¹): 1774, 1716, 1610. UV-Vis absorption (CH₂Cl₂): λ_{max} (lg ϵ) = 372 (5.12), 383 (5.15), 478 (3.94), 511 (4.32), 549 (4.67).

Trans-**3**: yield 66%; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, *J* = 11.2, 9.3 Hz, 2H), 4.60 (d, *J* = 5.6 Hz, 2H), 4.13 (s, 1H), 3.48 (s, 1H), 2.86 (d, *J* = 8.5 Hz, 2H), 2.61 – 2.52 (m, 2H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Acetone) δ 162.7, 150.7, 134.4, 134.1, 129.7, 126.7, 123.0, 121.5, 61.9, 48.5, 40.0. ¹⁹F NMR (471 MHz, Chloroform-d) δ -135.99 – -138.34 (m), -138.84, -139.94, -147.81 (d, *J* = 283.4 Hz), -150.37 (d, *J* = 356.5 Hz), -157.64 (d, *J* = 215.8 Hz), -158.74, -159.85 (d, *J* = 148.8 Hz), -160.33 – -161.38 (m). ESI-MS m/z: Calcd. For C₄₅H₁₄F₂₀N₅O₄ [M+H]⁺ 1068.072095, found 1068.072539. IR (cm⁻¹): 1772, 1631, 1600. UV-Vis absorption (CH₂Cl₂): λ_{max} (lg ε) = 381 (4.93), 403 (5.09), 573 (4.32), 620 (4.47).

Synthesis of 4.

Scheme S5. Synthetic procedure used to access cis- and trans-4

Cis-**3** or *trans*-**3** (0.056 mmol) was dissolved in 20 mL toluene along with 150 mg (0.661 mmol) DDQ. The solution was heated at reflux for 6 hours. Purification was carried on a neutral aluminum oxide column protected from light. PE : CH_2Cl_2 (DCM) =1:1 was used as eluent to give the violet product *cis*- or *trans*-**4**.

Cis-**4**: yield 87%; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 2.2 Hz, 2H), 6.71 (s, 2H), 4.06 (s, 3H), 3.51 (s, 1H), 2.39 (s, 1H). ¹³C NMR (126 MHz, Chloroform*d*) δ 164.8, 157.6, 141.5, 134.9, 128.3, 124.1, 122.5, 117.3, 109.7, 84.1, 38.4. ¹⁹F NMR (471 MHz, Chloroform-*d*) δ -137.09 (dd, J = 23.2, 8.2 Hz), -139.09 (dd, J = 23.6, 7.8 Hz), -150.30 (dd, J = 23.9, 17.9 Hz), -151.56 (t, J = 20.9 Hz), -159.22 – -160.47 (m), -160.99 – -161.65 (m). MALDI-TOF-MS m/z: Calcd. For C₄₅H₉F₂₀N₅O₄ [M+H]⁺ 1063.032970, found 1063.033600. IR (cm⁻¹): 1774, 1605. UV-Vis absorption (CH₂Cl₂): λ_{max} (lgε) = 376 nm (4.85), 393 nm (5.10), 415 nm (5.40), 546 nm (4.25), 573 nm (4.36), 595 nm (4.38).

Trans-**4**: yield 90%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 12.6 Hz, 2H), 6.85 (s, 1H), 6.77 (s, 1H), 4.15 (s, 3H), 0.79 (s, 1H), 0.19 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 151.2, 139.4, 138.4, 135.0, 134.9, 127.7, 124.6, 124.2, 123.0, 116.7, 116.4, 38.6.¹⁹F NMR (471 MHz, Chloroform-*d*) δ -137.17 (dd, *J* = 54.0, 15.4 Hz), -138.28 (d, *J* = 15.8 Hz), -138.96 (d, *J* = 15.7 Hz), -150.12 (t, *J* = 20.9 Hz), -150.82 (q, *J* = 20.1 Hz), -151.52 (t, *J* = 20.7 Hz), -159.25 - -159.93 (m), -160.07 - -160.48 (m), -160.67 - -160.97 (m), -161.25 - -161.81 (m). Calcd. For C₄₅H₉F₂₀N₅O₄ [M+H]⁺ 1063.032970, found 1063.034118. IR (cm⁻¹): 1753, 1591. UV-Vis absorption (CH₂Cl₂): λ_{max} (lgε) = 393 nm (5.50), 409 nm (5.05), 431 nm (5.17), 586 nm (4.17), 614 nm (4.23), 668 nm (4.65).

Synthesis of 5.

Scheme S6. Synthetic procedure used to obtain cis- and trans-5

Cis-4 or *trans*-4 (0.042 mmol) was dissolved in 20 mL chloroform. The solution was saturated with oxygen. Then, it was irradiated in a photoreactor and irradiated. Over the course of 4 h, the solution changed from violet to dark red. The volatiles were removed using a rotary evaporator. Purification was carried on a silica gel column. PE : DCM = 8:1 was used to separate the red product, consisting of *cis*- or *trans*-5 depending on the choice of starting material.

Cis-5: yield 16%. ¹H NMR (500 MHz, Chloroform-d) δ 8.76 (s, 2H), 3.30 (s, 3H), -

1.05 (s, 1H), -1.64 (s, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 164.2, 161.8, 139.4, 133.9, 130.8, 128.1, 106.7, 25.3. ¹⁹F NMR (471 MHz, Chloroform-d) δ -138.28 – -138.54 (m), -138.69 (dd, *J* = 23.6, 8.0 Hz), -149.49 (d, *J* = 21.0 Hz), -149.56, -149.77 (t, *J* = 21.4 Hz), -160.27 – -160.55 (m), -161.24 – -161.44 (m). MALDI-TOF-MS m/z: Calcd. For C₄₅H₇F₂₀N₅O₆ [M+H]⁺ 1093.007149, found 1093.008387. IR (cm⁻¹):1774, 1724. UV-Vis absorption (CH₂Cl₂): λ_{max} (lg ϵ) =432 (5.31), 526 (4.18), 568 (4.00), 658 (3.92), 722 (4.86).

Trans-**5**: yield 18%. ¹H NMR (500 MHz, Chloroform-d) δ 8.80 – 8.67 (m, 2H), 3.25 (s, 3H), -0.66 (s, 1H), -0.69 (s, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 164.0, 163.6, 162.2, 161.9, 156.6, 154.4, 143.7, 142.7, 138.8, 134.6, 134.0, 132.8, 130.5, 130.4, 128.5, 128.2, 107.2, 101.5, 25.2. ¹⁹F NMR (471 MHz, Chloroform-d) δ -136.61 – 137.28 (m), -137.74 – -138.51 (m), -138.71 – -139.06 (m), -139.96 – -140.63 (m), -148.51 (t, *J* = 20.9 Hz), -149.40 (t, *J* = 20.8 Hz), -150.06 (t, *J* = 21.1 Hz), -150.71 (t, *J* = 20.8 Hz), -159.63 (dd, *J* = 21.6, 14.3 Hz), -160.37 (dd, *J* = 21.7, 14.4 Hz), -161.42 (dd, *J* = 21.5, 15.4 Hz), -161.76 (dd, *J* = 21.3, 15.4 Hz). MALDI-TOF-MS m/z: Calcd. For C₄₅H₇F₂₀N₅O₆ [M+H]⁺ 1093.007149, found 1093.005622. IR (cm⁻¹): 1786, 1720. UV-Vis absorption (CH₂Cl₂): *λ*_{max} (lgε) =423(5.19), 524(4.00), 564(4.25), 640(4.02), 702(4.75).

Analysis of the *cis* isomer product in 1,3-dipolar cycloaddition.

Scheme S7. (a) Dual descriptor for explaining 1,3-dipolar cycloaddition of *cis/trans*-1 and (b) energy diagram for reaction coordinates as well as the structures of transition states and products for 1,3-dipolar cycloaddition of *cis/trans*-1.

Dual descriptor,⁵ which is often used to predict the chemical reactivity of cycloaddition reaction, as shown in scheme S7, is evenly distributed in the two sides of lactone moieties in *trans* isomer, while distributed more in the side of saturated oxygen atom than carbonyl group in *cis* isomer. This indicates the favor formation of *cis* isomer in this work (product 1) rather than another possible *cis* isomer (product 2). Further more, the energy diagram for reaction coordinates exhibit a higher energy of transition state and product of another possible *cis* isomer (product 2) compared with the *cis* isomer in this work (product 1), which also suggest the favor formation of *cis* isomer in this work both thermodynamically and kinetically.

2. Photophysical properties, electrochemistry measurement and computation details.

Electrochemistry measurement.

The electrochemistry analyses were conducted using a standard three-electrode configuration on a Shanghai Chenhua CHI660C electrochemical workstation at 25 °C under argon. Cyclic voltammetric curves were recorded using glassy-carbon working electrode disks of 3 mm diameter (Cypress Systems EE-040). Between scans, the working electrode was subject to a sequence that involved polishing with diamond paste (Buehler) of decreasing sizes (3 to 0.05 μ m) interspersed by washings with purified H₂O. The auxiliary electrode was a platinum wire and Ag/AgCl electrode was used as the reference electrode. All glassware used for electrochemical studies was oven dried overnight and allowed to cool to room temperature before use.

X-ray diffraction measurement.

X-ray diffraction data were collected on *Rigaku XtaLAB Pro: Kappa single system* instrument equipped with Mo K*α* source. Suitable crystal was mounted on the diffractometer and cooled under a nitrogen stream as soon as practical after mounting to preclude desolvation. The *CrysAlisPro* program was employed for data processing. The structure was solved using *SHELXT 2014* program⁶ and refined against *F*² anisotropically for all non-hydrogen atoms per the full matrix least-squares protocol using the *SHELXL 2016* program in an Olex2 GUI.⁷ The *Platon* program package⁸ was employed for squeeze processing.

Computational details.

In this work, the hybrid density functional, B3LYP⁹ was employed for all calculations using the program package G09¹⁰ (except for the ACID calculations). The 6-31G(d) basis set¹¹ was used for all atoms subject top geometry optimization, while current density tensor computations were used for the ACID calculations.¹² The 6-31+G(d) basis set was employed in NICS ¹³ calculation. Geometry optimizations of the singlet ground state (S₀) were carried out using the density functional theory without symmetry constraints. Frequency calculations were performed on the optimized structures to ensure that they represented true minimum energy structures as judged by the absence of imaginary frequency values (i.e. NImag = 0). And the transition states were also confirmed by only one imaginary frequency along the reaction coordinates. The intrinsic reaction coordinate (IRC) calculations were also performed to connect the reactants, transition states and products. NMR shielding tensors were computed using the Continuous Set of Gauge Transformations (CSGT) method¹⁴ and the Gauge-Independent Atomic Orbital (GIAO) method^{14c, 15}. ACID plots were constructed using the AICD 2.0 program package^{12a} and drawn using Povray 3.7.

3. Supporting Tables and Figures.

Compounds	<i>ci</i> s -3 (CCDC 1568750)	<i>trans-</i> 3 (CCDC 1568751)
molecular formula	$C_{49}H_{21}CI_3F_{20}N_5O_4$	$C_{45}H_{11}F_{20}N_5O_4$
formula wt (g mol ⁻¹)	1230.06	1065.59
temperature (K)	180.00(10)	100.00(11)
Radiation (λ, Å)	0.71073	0.71073
crystal system	monoclinic	monoclinic
space group	$I_{1\frac{2}{m}1}$	$C_{1\frac{2}{m^{1}}}$
a(Å)	18.9313(9)	25.7880(5)
$b(\text{\AA})$	16.3839(12)	16.3752(3)
c(Å)	17.3825(10)	12.6133(2)
α (°)	90	90
β (°)	91.048(4)	90.592(2)
γ (°)	90	90
Volume (Å ³)	5390.6(6)	5326.11(17)
Z	4	4
ρ _{calcd} (g cm⁻³)	1.516	1.329
µ (mm⁻¹)	0.287	0.134
F (000)	2452	2112
crystal size (mm ³)	0.23×0.21×0.15	0.319×0.236×0.148
Theta range	2.847 to 27.484°	3.5730 to 30.2550°
reflections collected	19233	78894
independent reflections	6392[R(int)=0.0457]	7075[R(int)=0.0116]
Completeness	99.83%	99.72%
goodness-of-fit on ² F	1.064	1.060
final R	<i>R</i> 1 ^{<i>a</i>} =0.0954	<i>R</i> 1 ^{<i>a</i>} =0.0690
indices[R>2σ(I)]	wR ₂ ^b =0.2963	$wR_2^b = 0.1888$
R indices (all data)	<i>R</i> 1 ^{<i>a</i>} =0.1321	<i>R</i> 1 ^{<i>a</i>} =0.0755
	wR ₂ ^b =0.2623	$wR_2^b = 0.1948$
Largest diff. peak and hole (e $Å^{-3}$)	1.647 and -1.297	0.572 and -0.298

 Table S1. Crystal data and structure refinement of *cis/trans*-3.

Compounds	<i>cis-</i> 4 (CCDC 1841552)	trans-4 (CCDC 1841553)
molecular formula	$C_{46}H_{10}CI_3F_{20}N_5O_4$	$C_{46}H_{10}CI_3F_{20}N_5O_4$
formula wt (g mol ⁻¹)	1182.94	1182.94
temperature (K)	179.99(10)	179.99(10)
Radiation (λ, Å)	0.71073	0.71073
crystal system	monoclinic	monoclinic
space group	P 21	P 21/n
$a(\text{\AA})$	14.5721(8)	19.2843(10)
$b(\text{\AA})$	9.2987(6)	8.2608(4)
c(Å)	15.8007(10)	28.316(2)
α (°)	90	90
β (°)	90.331(6)	103.985(6)
γ (°)	90	90
Volume (Å ³)	2141.0(2)	4377.1(5)
Z	2	4
$ ho_{calcd}$ (g cm ⁻³)	1.835	1.795
µ (mm⁻¹)	0.358	0.35
F (000)	1168	2336
crystal size (mm ³)	0.2×0.05×0.04	0.4×0.08×0.05
Theta range	2.5730 to 20.7440°	2.1800 to 25.4210°
reflections collected	18279	25827
independent reflections	8264[R(int)=0.0649]	7712[R(int)=0.0492]
Completeness	0.988	0.999
goodness-of-fit on ² F	1.03	1.027
final R	$R1^{a}$ - 0.0689	<i>R</i> 1 ^{<i>a</i>} =0.0815
indices[R>2σ(I)]	$wR_2^b = 0.1753$	$wR_{Z}^{h}=0.2162$
R indices (all data)	$R1^a_{} = 0.1115$	$R1^{a} = 0.1256$
	$wR_2^p = 0.1585$	$wR_2^p = 0.1906$
Largest diff. peak and hole (e Å ⁻³)	0.450 and -0.716	0.908 and -0.959

 Table S2. Crystal data and structure refinement of *cis/trans*-4.

Compounds	<i>cis-</i> 5 (CCDC 1851807)	trans-5 (CCDC 1851808)
molecular formula	C45H7F20N5O6	$C_{45}H_7F_{20}N_5O_6$
formula wt (g mol ⁻¹)	1093.56	1093.56
temperature (K)	179.99(11)	100.00(13)
Radiation (λ, Å)	0.71073	0.71073
crystal system	triclinic	monoclinic
space group	P -1	P 21
$a(\text{\AA})$	18.2714(3)	33.9547(16)
$b(\text{\AA})$	18.3261(2)	8.7071(3)
c(Å)	35.2109(6)	58.8064(13)
α (°)	95.7970(10)	90
β (°)	97.4290(10)	93.851(3)
γ (°)	90.0230(10)	90
Volume (Å ³)	11630.3(3)	17346.7(11)
Z	10	16
ρ _{calcd} (g cm⁻³)	1.561	1.675
µ (mm⁻¹)	0.159	0.17
F (000)	5400	8640
crystal size (mm ³)	0.6×0.4×0.15	0.3×0.1×0.05
Theta range	1.7070 to 26.5980°	2.1600 to 27.7710°
reflections collected	138185	93886
independent reflections	40971[R(int)=0.0726]	54490[R(int)=0.0925]
Completeness	0.997	99.60%
goodness-of-fit on ² F	1.018	1.09
final R	$R1^{a} = 0.0959$	R1 ^a = 0 1453
indices[R>2σ(I)]	$wR_{2^{b}} = 0.2193$	$wR_{2^{b}} = 0.3615$
R indices (all data)	R1 ^a = 0.1463	R1 ^a = 0.2369
	$wR_{2^{b}} = 0.2449$	wR ₂ ^b =0.3039
Largest diff. peak and hole (e Å ⁻³)	1.006 and -0.626	1.619 and -0.952

 Table S3. Crystal data and structure refinement of *cis/trans*-5.

Table S4. Average length and standard deviations of selected chemical bonds for the core ring present in *cis/trans*-3.

cis- 3			trans- 3		
	Bond	Length /Å	Bond	Length /Å	
	C00J-N00D	1.359	C8-N3	1.375	
	C00N-N00G	1.308	C6-N2	1.325	
	C00R-N00G	1.383	C4-N2	1.380	
C-N	C00J-N00F	1.372	C2-N1	1.368	
	Average	1.356		1.362	
	Standard deviation	0.033		0.025	
	C00N-C00K	1.424	C6-C7	1.422	
	C00K-C00J	1.365	C7-C8	1.371	
	C00R-C00Q	1.381	C4-C3	1.377	
	C00Q-C00U	1.405	C3-C2	1.422	
	C00U-C011	1.417	C8-C9	1.309	
<u> </u>	C011-C011	1.357	C9-C9	1.548	
6-6	C013-C00R	1.456	C6-C5A	1.404	
	C00J-C00L	1.516	C5B-C4	1.409	
	C00L-C00L	1.556	C2-C1	1.415	
			C1-C1	1.386	
	Average	1.431		1.406	
	Standard deviation	0.068		0.060	

 Table S5. Average length and standard deviations of selected chemical bonds for the core ring present in *cis/trans-4*.

cis- 4			trans- 4		
	Bond	Length /Å	Bond	Length /Å	
	C5-N2	1.368	C4-N2	1.359	
	C8-N2	1.366	C7-N2	1.380	
	C3-N1	1.390	C2-N1	1.363	
	C1-N1	1.322	C21-N1	1.315	
	C20-N4	1.366	C19-N4	1.395	
	C14-N4	1.393	C13-N4	1.372	
C-N	C10-N3	1.300	C9-N3	1.348	
	C12-N3	1.377	C11-N3	1.366	
	C18-N5	1.378	C17-N5	1.355	
	C16-N5	1.355	C15-N5	1.376	
	Average	1.362		1.363	
	Standard deviation	0.029		0.022	
	C6-C7	1.378	C5-C6	1.372	
	C5-C6	1.405	C5-C4	1.405	
	C5-C4	1.413	C3-C4	1.419	
	C4-C3	1.364	C3-C2	1.380	
	C3-C2	1.474	C1-C2	1.478	
	C1-C21	1.419	C21-C20	1.399	
	C21-C20	1.396	C20-C19 1.378		
	C20-C19	1.437	C19-C18 1.432		
	C19-C15	1.407	C18-C14 1.416		
C C	C15-C14	1.447	C14-C13	1.450	
6-6	C14-C13	1.378	C13-C12	1.385	
	C13-C12	1.399	C11-C12	1.406	
	C11-C10	1.485	C10-C11	1.488	
	C10-C9	1.373	C9-C8	1.373	
	C9-C8	1.406	C8-C7	1.408	
	C8-C7	1.412	C7-C6	1.395	
	C19-C18	1.399	C14-C15	1.363	
	C15-C16	1.374	C18-C17	1.377	
	Average	1.409		1.407	
Standard deviation		0.034		0.036	

cis-**4**

trans-**4**

Table S6. Average length and standard deviations of selected chemical bonds for thecore ring present in *cis/trans*-5.

	cis- 5		trans- 5		
	Bond	Length /Å	Bond	Length /Å	
	C195-N24	1.375	C315-N304	1.415	
	C192-N24	1.362	C317-N305	1.400	
	C197-N25	1.367	C319-N305	1.399	
	C199-N25	1.318	C321-N302	1.351	
	C201-N22	1.387	C305-N301	1.471	
	C186-N22	1.366	C302-N301	1.464	
C-N	C188-N23	1.315	C306-N302	1.357	
	C190-N23	1.371	C308-N303	1.388	
	C183-N21	1.389	C310-N303	1.388	
_	C182-N21	1.398	C312-N304	1.407	
	Average	1.365		1.404	
	Standard deviation	0.028		0.039	
	C193-C194	1.350	C313-C314	1.417	
	C194-C195	1.414	C314-C315	1.410	
	C195-C196	1.392	C315-C316	1.351	
	C196-C197	1.377	C316-C317	1.400	
	C197-C198	1.473	C317-C318	1.398	
	C199-C200	1.394	C319-C320	1.307	
	C200-C201	1.384	C320-C321 1.353		
	C201-C184	1.437	C321-C304 1.477		
	C184-C185	1.367	C304-C303 1.460		
	C185-C186	1.424	C304-C305	1.469	
6-6	C186-C187	1.401	C302-C303 1.471		
	C187-C188	1.416	C303-C306 1.439		
	C189-C190	1.478	C306-C307	1.385	
	C190-C191	1.382	C307-C308	1.311	
	C191-C192	1.407	C308-C309	1.394	
	C192-C193	1.423	C310-C311	1.340	
	C183-C184	1.492	C311-C312	1.314	
	C182-C185	1.505	C312-C313	1.407	
	Average	1.418		1.395	
Standard deviation		0.044		0.056	

Compound	UV-vis λ_{max} [nm] (log ε [M ⁻¹ cm ⁻¹])		fluorescence λ_{\max}	• •		$E_{\rm red}$ c
Compound -	Soret bands	Q bands	[nm] (τ [ns])	ΨF°	⊏ox°[V]	[V]
	391(5.11),	505(4.26), 600 (3.88),	000 714 (0.40)	0.000	4.00	-0.44,
C/S-1 °	408(5.62),	657(4.47)	662, 711 (3.49)	0.090	1.66	-0.85
(512(4.15), 552(4.38),	070 755 (0.40)	0.400	4.04	-0.37,
trans-1 °	410(5.56)	676(4.89)	678, 755 (3.49)	0.100	1.01	-0.87
	246 (4 02) 279	443 (3.83), 470 (3.97), 502				0 72
cis- 2	540 (4.95), 570 (5.02)	(4.44), 606 (3.67), 659	737, 784 (2.11)	0.061	0.94	-0.73,
	(5.03)	(4.02), 722 (4.56)				-1.11
	245 (4 01) 292	450 (3.46), 478 (3.58), 510				0.67
trans-2	(4.91), 302	(4.37), 689 (3.65), 750	754, 828 (2.61)	0.053	0.87	-0.07,
	(4.90)	(4.81)				-1.00
cic 3	372 (5.12), 383	478 (3.94), 511 (4.32), 549	550 604 (5 10)	0 251	1 5 2	-0.74,
018-3	(5.15)	(4.67)	559, 604 (5.10)	0.001	1.02	-1.05
<i>(</i>)	381 (4.93), 403	572 (4 22) 620 (4 47)	625 682 (5 46)	0.245	1 20	-0.62,
uans -3	(5.09)	373 (4.32), 020 (4.47)	033, 083 (3.40)	0.245	1.50	-1.03
	376(4.85),	546(4 25) 573(4 36)				-0.85
cis- 4	393(5.10),	595(4.38)	617, 666 (8.34)	0.363	1.35	-0.00,
	415(5.40)	333(4.30)				-1.14
	393(5.50),	586(4 17) 614(4 23)				-0.64
trans-4	409(5.05),	668(4,65)	692, 746 (3.29)	0.152	1.22	-0.04,
	431(5.17)	000(4.03)				-1.10
		526(4 18) 568(4 00)				0.0, -
cis- 5	432(5.31)	658(3,92), 722(4,86)	728, (3.45)	0.209	 ^f	0.48,
		000(0.02), 722(4.00)				-1.59
		524(4.00) 564(4.25)				-0.06,
trans-5	423(5.19)	$640(4\ 02), \ 702(4\ 75)$	707, 764 (3.95)	0.277	f	-0.54,
		0+0(+.02), 102(+.10)				-1.64

Table S7. Photophysical and electrochemical data for the *cis/trans* porphyrinoids 1-5^a

^aAll photophysical analyses were carried out in anhydrous CH_2CI_2 at room temperature. ^bQuantum yields were measured using an Edinburgh Analytical Instrument FLS-980 equipped with an integrating sphere except for *cis/trans*-**1**. ^cRelative to Fc⁺/Fc with the underlying analyses being carried out in CH_2CI_2 using n-Bu₄NPF₆ as the electrolyte. ^d The HL energy gap was estimated by the difference of E_{ox}^{1} - E_{re}^{1} . ^eFrom ref. 7. ^fNo oxidation waves for **5** were observed in CH_2CI_2 .

Scan rate (V⋅s ⁻¹)	Redox 1 (V)	Redox 2 (V)
0.05	0.622 - 0.555 = 0.067	1.030 - 0.963 = 0.067
0.07	0.622 - 0.555 = 0.067	1.027 - 0.960 = 0.067
0.1	0.622 - 0.555 = 0.067	1.027 - 0.957 = 0.070
0.3	0.625 - 0.540 = 0.085	1.021 - 0.930 = 0.091
0.5	0.640 - 0.543 = 0.097	1.042 - 0.945 = 0.097

Table S8. Reversibility of redox waves in *cis*-**3** with different scan rate of CV measurements.

			sub-ring				
NIC5(1)	/ppm	a a		b	С	d	
4	cis	-10.61	-1.23	-1.39	-10.72	-11.58	
1	trans	-11.37	-1.52	-1.17	-11.07	-11.68	
2	cis	-9.88	0.89	0.48	-10.60	-13.22	
2	trans	-10.71	0.90	1.19	-12.12	-10.84	
2	cis	-4.72	-2.52	-2.48	-0.07	-10.01	
3	trans	-6.39	-2.01	-3.09	0.46	-10.07	
4	cis	-7.16	-1.76	-1.66	-4.24	-11.58	-12.76
4	trans	-9.23	-1.93	-1.42	-4.81	-12.46	-12.51
E	cis	-10.93	-1.63	-1.59	-9.02	-9.78	0.094
5	trans	-10.36	-1.38	-1.78	-9.26	-8.66	0.559
Cavaleiro	cis	-11.63					
et al.	trans	-11.85					
Lindsey et	cis	-11.12					
al.	trans	-11.88					
ablaraphyll	d	-10.80					
спютортуп	f	-11.45					
Inhoffen et	cis	-11.31					
al.	trans	-11.42					
Brückner	cis	-9.54					
et al							
(compund	trans	-10.38					
14)							
Brückner	cis	-10.23					
et al							
(compound	trans	-10.89					
16)							

Table S9. Change in the NICS(1) values in the middle ring and the sub-rings.

(recorded in CDCi3) and ΔQ_{L} absorption values for compounds discussed in this paper.						
		β-H NMR/ppm	Average /ppm	Q _L /nm	$\Delta \mathbf{Q}_{L}$ /nm	
1	cis	8.70 8.52 8.53	8 73	657	10	
	trans	8.85	0.75	676	19	
2	cis	8.18, 7.66, 7.43	9.10	723	20	
2	trans	8.35, 8.27, 7.78	0.12	751	20	
2	cis	7.23	7.40	549	71	
3	trans	7.55, 7.60		620	7 1	
Α	cis	7.79	8 <u>00</u>	595	70	
4	trans	8.20, 8.23	0.00	668	13	
E	cis	8.76	9.75	659	20	
5	trans	8.74	0.75	640	20	

(recorded in CDCl₃) and ΔQ_L absorption values for compounds discussed in this paper.

Figure S1. ¹H NMR spectrum of *cis-***2** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S2. ¹H NMR spectrum of *trans-***2** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S3. ¹H NMR spectrum of *cis*-3 recorded at room temperature in CD₂Cl₂.

Figure S4. ¹H NMR spectrum of *trans*-**3** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S5. ¹H NMR spectrum of *cis*-4 recorded at room temperature in CDCl₃.

Figure S6. ¹H NMR spectrum of *trans-***4** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S7. ¹H NMR spectrum of *cis*-5 recorded at room temperature in CDCl₃.

Figure S8. ¹H NMR spectrum of *trans*-**5** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S9. ¹³C NMR spectrum of *cis*-**2** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S10. ¹³C NMR spectrum of *trans-***2** recorded at room temperature in acetone d_6 (* indicates peaks ascribed to residual solvents and impurities).

Figure S11. ¹³C NMR spectrum of *cis*-**3** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S12. ¹³C NMR spectrum of *trans*-**3** recorded at room temperature in acetone d_6 (* indicates peaks ascribed to residual solvents and impurities).

Figure S13. ¹³C NMR spectrum of *cis*-**4** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S14. ¹³C NMR spectrum of *trans*-**4** recorded at room temperature in acetone d_6 (* indicates peaks ascribed to residual solvents and impurities).

Figure S15. ¹³C NMR spectrum of *cis*-**5** recorded at room temperature in CDCl₃ (* indicates a peak ascribed to residual solvents and impurities).

Figure S16. ¹³C NMR spectrum of *trans*-**5** recorded at room temperature in acetone d_6 (* indicates peaks ascribed to residual solvents and impurities).

Figure S17. ¹⁹F NMR spectrum of *cis*-2 recorded at room temperature in CDCl₃.

Figure S18. ¹⁹F NMR spectrum of *trans-2* recorded at room temperature in CDCl₃.

Figure S19. ¹⁹F NMR spectrum of *cis*-3 recorded at room temperature in CDCl₃.

Figure S20. ¹⁹F NMR spectrum of *trans*-3 recorded at room temperature in CDCl₃.

Figure S21. ¹⁹F NMR spectrum of *cis*-4 recorded at room temperature in CDCl₃.

Figure S22. ¹⁹F NMR spectrum of *trans*-4 recorded at room temperature in CDCl₃.

Figure S23. ¹⁹F NMR spectrum of *cis*-5 recorded at room temperature in CDCl₃.

Figure S24. ¹⁹F NMR spectrum of *trans*-5 recorded at room temperature in CDCI₃.

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 1014.038852
 1
 C42H10F20N4O4
 100.00
 1014.037721
 -1.1
 -0.5
 n.a.
 30.5
 odd
 ok

Figure S25. HR-MS(ESI) (top) and simulation (bottom) of cis-2

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 1014.036329
 1
 C42H10F20N4O4
 100.00
 1014.03721
 1.4
 1.1
 5.6
 30.5
 odd
 ok

Figure S26. HR-MS(ESI) (top) and simulation (bottom) of trans-2

Figure S27. MALDI-TOF-MS (top) and simulation (bottom) of cis-3

Figure S28. MALDI-TOF-MS (top) and simulation (bottom) of trans-3

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 1063.033600
 1
 C45H9F20N5O4
 100.00
 1063.032970
 -0.6
 -1.1
 131.4
 34.5
 odd
 ok

Figure S30. MALDI-TOF-MS (top) and simulation (bottom) of trans-4

 Meas.m/z
 # Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e⁻ Conf
 N-Rule

 1093.008387
 1
 C45H7F20N506
 100.00
 1093.007149
 -1.1
 -3.1
 191.2
 35.5
 odd
 ok

Figure S31. MALDI-TOF-MS (top) and simulation (bottom) of cis-5

Figure S32. MALDI-TOF-MS (top) and simulation (bottom) of trans-5

Figure S34. FT-IR spectrum of *trans-2*.

Figure S36. FT-IR spectrum of trans-3.

Figure S37. FT-IR spectrum of *cis-*4.

Figure S38. FT-IR spectrum of trans-4.

Figure S40. FT-IR spectrum of trans-5.

Figure S41. COSY and NOSEY spectra of *cis*-1.

Figure S42. COSY and NOSEY spectra of *trans-*1.

Figure S43. COSY and NOSEY spectra of *cis-*2.

Figure S44. COSY and NOSEY spectra of trans-2.

Figure S45. COSY and NOSEY spectra of cis-3.

Figure S46. COSY and NOSEY spectra of trans-3.

Figure S47. COSY and NOSEY spectra of cis-4.

Figure S48. COSY and NOSEY spectra of trans-4.

Figure S49. COSY and NOSEY spectra of cis-5.

Figure S50. COSY and NOSEY spectra of trans-5.

Figure S51. X-ray structure of *cis*-**3**. Thermal ellipsoids set at 50% probability (red: oxygen, gray: carbon, green: fluorine, blue: nitrogen).

Figure S52. X-ray structure of *trans*-**3**. Thermal ellipsoids set at 50% probability (red: oxygen, gray: carbon, green: fluorine, blue: nitrogen).

Figure S53. X-ray structure of *cis*-**4**. Thermal ellipsoids set at 50% probability (red: oxygen, gray: carbon, green: fluorine, blue: nitrogen).

Figure S54. X-ray structure of *trans*-**4**. Thermal ellipsoids set at 50% probability (red: oxygen, gray: carbon, green: fluorine, blue: nitrogen).

Figure S55. X-ray structure of *cis*-**5**. Thermal ellipsoids set at 50% probability (red: oxygen, gray: carbon, green: fluorine, blue: nitrogen).

Figure S56. X-ray structure of *trans*-**5**. Thermal ellipsoids set at 50% probability (red: oxygen, gray: carbon, green: fluorine, blue: nitrogen).

Figure S57. Normalized excitation spectrum of *cis*-2 and *trans*-2 in CH₂Cl₂.

Figure S58. Normalized excitation spectrum of *cis*-3 and *trans*-3 in CH₂Cl₂.

Figure S59. Normalized excitation spectrum of *cis*-4 and *trans*-4 in CH₂Cl₂.

Figure S60. Normalized excitation spectrum of *cis*-5 and *trans*-5 in CH₂Cl₂.

Figure S61. Lifetime measurement of cis-2 in CH_2Cl_2 .

Figure S62. Lifetime measurement of *trans*-2 in CH_2CI_2 .

Figure S63. Lifetime measurement of *cis*-3 in CH₂Cl₂.

Figure S64. Lifetime measurement of *trans*-3 in CH_2CI_2 .

Figure S65. Lifetime measurement of cis-4 in CH₂Cl₂.

Figure S66. Lifetime measurement of *trans*-4 in CH_2CI_2 .

Figure S67. Lifetime measurement of cis-5 in CH₂Cl₂.

Figure S68. Lifetime measurement of *trans*-5 in CH_2CI_2 .

Figure S69. Absolute quantum yield of *cis*-2 in CH₂Cl₂.

Figure S70. Absolute quantum yield of trans-2 in CH₂Cl₂.

Figure S71. Absolute quantum yield of *cis*-3 in CH_2CI_2 .

Figure S72. Absolute quantum yield of *trans*-3 in CH₂Cl₂.

Figure S73. Absolute quantum yield of *cis*-4 in CH₂Cl₂.

Figure S74. Absolute quantum yield of *trans*-4 in CH₂Cl₂.

Figure S75. Absolute quantum yield of *cis*-5 in CH₂Cl₂.

Figure S76. Absolute quantum yield of *trans*-5 in CH₂Cl₂.

Figure S77. Cyclic Voltammograms of *cis-***2** and *trans-***2** in DCM containing 0.1M NBu₄PF₆ (V *vs.* AgCl/Ag).

Figure S78. Cyclic Voltammograms of *cis*-**3** and *trans*-**3** in DCM containing 0.1M NBu_4PF_6 (V vs. AgCI/Ag).

Figure S79. Cyclic Voltammograms of *cis*-4 and *trans*-4 in DCM containing 0.1M NBu_4PF_6 (V vs. AgCI/Ag).

Figure S80. Cyclic Voltammograms of *cis*-**5** and *trans*-**5** in DCM containing 0.1M NBu_4PF_6 (V vs. AgCI/Ag).

Figure S81. Cyclic Voltammograms of *cis*-**3** in DCM containing 0.1M NBu₄PF₆ (V *vs.* AgCl/Ag) with different scan rates.

Figure S82. Average NICS(1) value *vs* average $\delta_{\beta-Hs}$ for **1-5** in this work.

Figure S83. Correlation between regioisomeric effect and aromaticity estimated by average chemical shifts of N-Hs in cis/trans-isomers.

Figure S84. Correlation between regioisomeric effect and aromaticity estimated by average chemical shifts of β -Hs in cis/trans-isomers.

Figure S85. Correlation between regioisomeric effect (position of the Soret bands) and aromaticity estimated by the average NICS(1) value in the *cis/trans*-isomers.

Figure S86. Observed Q band energy versus the calculated HOMO-LUMO gap in 1-

5.

Figure S87. The experimental Q band wavelength *versus* the theoretical Q band wavelength in 1-5.

Figure S88. The oscillator strength, *f*, of the Q_L band *versus* the calculated Δ HOMO in **1-5**.

Figure S89. HOMO-LUMO gap at the optimized S_0 geometries *vs* $Q_L(0,0)$ band for **1**-**5** in this work.

4. Reference:

- 1. J. S. Lindsey and R. W. Wagner, J. Org. Chem., 1989, 54, 828–836.
- a) Y. Yu, H. Lv, X. Ke, B. Yang and J. L. Zhang, *Adv. Synth. Catal.*, 2012, **354**, 3509-3516; b) X.-S. Ke, Y. Chang, J.-Z. Chen, J. Tian, J. Mack, X. Cheng, Z. Shen and J.-L. Zhang, *J. Am. Chem. Soc.*, 2014, **136**, 9598-9607.
- a) C. Brückner, J. R. McCarthy, H. W. Daniell, Z. D. Pendon, R. P. Ilagan, T. M. Francis,
 L. Ren, R. R. Birge and H. A. Frank, *Chem. Phys.*, 2003, **294**, 285-303; b) J. Ogikubo, E.
 Meehan, J. T. Engle, C. J. Ziegler and C. Brückner, *J. Org. Chem.*, 2013, **78**, 2840-2852.
- 4. A. M. Silva, A. C. Tomé, M. G. Neves, A. M. Silva and J. A. Cavaleiro, *J. Org. Chem.*, 2005, **70**, 2306-2314.
- 5. C. Morell, A. Grand and A. Toro-Labbe, J. Phys. Chem. A, 2005, **109**, 205-212.
- 6. a) G. M. Sheldrick, *Acta. Crystallogr. A*, 2008, **64**, 112-122; b) G. M. Sheldrick, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339-341.
- 8. A. L. Spek, Acta Crystallogr. D, 2009, **65**, 148-155.
- a) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648-5652.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09 (Revision E.01)*, Gaussian Inc., Wallingford CT, 2009.
- a) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213-222; b) M. M.
 Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A.
 Pople, *J. Chem. Phys.*, 1982, **77**, 3654-3665.
- a) R. Herges and D. Geuenich, J. Phys. Chem. A, 2001, 105, 3214-3220; b) D.
 Geuenich, K. Hess, F. Köhler and R. Herges, Chem. Rev., 2005, 105, 3758-3772; c) Y.
 Chang, H. Chen, Z. Zhou, Y. Zhang, C. Schütt, R. Herges and Z. Shen, Angew. Chem.
 Int. Ed., 2012, 51, 12801–12805; d) J. I. Wu, I. Fernández and P. v. R. Schleyer, J.
 Am. Chem. Soc., 2012, 135, 315-321.
- a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. van Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317-6318; b) P. v. R. Schleyer, H. Jiao, N. J. v. E. Hommes, V. G. Malkin and O. L. Malkina, J. Am. Chem. Soc., 1997, 119, 12669-12670.

- a) T. Keith and R. Bader, *Chem. Phys. Lett.*, 1992, **194**, 1-8; b) T. A. Keith and R. F.
 Bader, *Chem. Phys. Lett.*, 1993, **210**, 223-231; c) J. R. Cheeseman, G. W. Trucks, T. A.
 Keith and M. J. Frisch, *J. Chem. Phys.*, 1996, **104**, 5497-5509.
- a) F. London, *J. Phys. Radium*, 1937, 8, 397-409; b) R. McWeeny, *Phys. Rev.*, 1962, 126, 1028-1034; c) R. Ditchfield, *Mol. Phys.*, 1974, 27, 789-807; d) K. Wolinski, J. F. Hinton and P. Pulay, *J. Am. Chem. Soc.*, 1990, 112, 8251-8260.