Supporting Information for

Furthering the Reaction Mechanism of Cationic Vanadium Clusters towards Oxygen

Hanyu Zhang,^{ab} Haiming Wu,^a Lijun Geng,^{ac} Yuhan Jia,^{ab} Mengzhou Yang^{ab} and Zhixun Luo^{*a}

^a Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences.

Beijing 100190, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^c School of Physics, Shandong University, Jinan 250100, P. R. China.

*Corresponding author. E-mail address: zxluo@iccas.ac.cn

S1. Small V_n⁺ clusters reacting with oxygen

Fig. S1 Full mass spectra of small V_n^+ (n=1-4) clusters produced via a 1.0 cm nozzle at the absence (a) and presence (b-g) of oxygen introduced into the reaction tube. The amount of oxygen (0.1 MPa 3%O₂/He) is controlled by the on-time width of a pulsed valve: 210, 220, 230, 240, 250, 270 μ s, respectively.

S2. Small neutral Vn⁰ reacting with oxygen

Neutral V_n clusters are obtained by vacuum ultraviolet laser (VUV 118nm) ionization, after removing the charged species by the deflection plates downstream the reaction tube. Details of the instrumentation method can be found in our recently published studies.¹⁻³

Fig. S2 TOF mass spectra of small V_n (n=1-4) clusters produced via a 1.0 cm nozzle at the absence (a) and presence (b-d) of oxygen added into the reaction tube. The amount of oxygen (0.1 MPa $3\%O_2$ /He) is controlled by the on-time width of pulsed valve: 200, 220, 250µs, respectively.

S3. Optimized structures of $V_{1-4}^{0,+}$ and their oxides

Fig. S3 The optimized stuctrues of $V_{1-4}^{0,+}$ and $V_{1-4}O_x^{0,+}$ at B3LYP-D3/TZVP level.

S4. Energy calculations

Table S1. ZPVE-corrected energies (E/eV) of V_nO_m^{+/0} species calculated at B3LYP-D3/TZVP level (lowest lying isomers in bold).

	M=1	M=3	M=5	M=7
0	2.759	0.000	١	١
O ₂	١	0.000	١	١
V ⁺	2.549	1.082	0.000	33.984
VO⁺	0.000	0.226	2.341	١
VO ₂ ⁺	0.000	1.378	3.696	١
V ₂	0.397	0.000	1.151	١
V ₂ O	5.229	0.175	0.000	0.164
V_2O_2	1.530	0.566	0.000	١
V ₃ ⁺	1.528	0.287	0.031	0.000
V ₃ O ⁺ -A	2.167	0.564	1.153	2.467
V₃O⁺-B	1.633	0.000	0.439	١
V₃O⁺-C	2.167	١	\ \	
V4-A	1.116	0.611	0.850	١
V ₄ -B	1.983	0.000	0.331	١
V ₄ O-A	1.507	١	١	١
V₄O-B	1.312	0.000	0.343	١
V ₄ O ₂ -A	2.501	١	١	1
V ₄ O ₂ -B	7.886	١	١	١
V ₄ O ₂ -C	2.109	0.910	0.736	0.000

	M=2	M=4	M=6	M=8
V	1.901	0.000	0.041	١
VO	1.306	0.000	3.449	١
VO ₂	0.000	1.737	4.052	١
V ₂ +	0.327	0.000	0.653	١
V ₂ O ⁺	3.138	0.202	0.000	0.281
V ₂ O ₂ +	0.000	0.348	0.018	١
V ₃	0.660	0.116	0.00	1.384
V ₃ O	0.301	0.000	0.550	١
V ₃ O ₂ -A	1.197	0.568	1.293	١
V ₃ O ₂ -B	0.993	0.888	1.135	١
V ₃ O ₂ -C	0.327	0.000	0.464	١
V ₃ O ₂ -D	0.657	١	١	١
V ₄ +-A	0.836	1.071	١	١
V ₄ +-B	1.643	0.000	0.148	2.069
V ₄ O ⁺	0.000	0.405	0.017	١

S5. Reaction channels of V_n^{+,0} (n=1-4) towards O₂

Table S2. Calculated reaction energies ($\Delta E/eV$, ZPVE Corrected energies) and Gibbs free energies ($\Delta G_{298k}/eV$) for the different dissociation channels of cationic V_n⁺ (n=1-4) clusters with oxygen at B3LYP-D3/TZVP Level.

Entrance Channel	Products Channel	ΔE/eV	∆G _{298k} /eV
⁵ V ⁺ + ³ O	(1a) ¹ VO ⁺	-9.698	-4.103
⁵ V ⁺ + ³ O ₂	(1b) ¹ VO ₂ ⁺	-4.053	-3.742
	(1c) ¹ VO ⁺ + ³ O	0.722	0.738
⁴ V ₂ ⁺ + ³ O ₂	(2a) ⁵ V ⁺ + ² VO ₂	-4.818	-4.818
	(2b) ¹ VO ⁺ + ⁴ VO	-3.981	-4.002
⁷ V ₃ ⁺ + ³ O ₂	(3a) ⁴ VO ⁺ + ⁶ V ₂ O	-5.896	-5.892
	(3b) ⁵ V ⁺ + ⁵ V ₂ O ₂	-5.599	-5.474
	(3c) ${}^{4}V_{2}^{+} + {}^{2}VO_{2}$	-4.127	-4.063
	(3d) ${}^{5}V_{2}O + {}^{1}VO^{+}$	-2.429	-2.353
⁴ V ₄ ⁺ + ³ O ₂	(4a) ⁵ V ⁺ + ⁴ V ₃ O ₂	-6.624	-7.478
	(4b) ⁴ VO + ³ V ₃ O ⁺	-6.586	-7.559
	(4c) ${}^{3}V_{2} + {}^{2}V_{2}O_{2}^{+}$	-5.284	-6.180
	(4d) ${}^{4}V_{2}^{+} + {}^{5}V_{2}O_{2}$	-4.798	-5.739
	(4e) ⁶ V ₂ O ⁺ + ⁵ V ₂ O	-4.234	-5.264

[a] Spin multiplicities are marked as pre-superscripts.

[b] ZPVE Corrected Energies for the isomers of the above species are given in Table S1.

[c] The structures of the selected isomers are given in Fig. S3.

Entrance Channel	Products Channel	∆ E/eV	$\Delta \mathbf{G}_{\mathbf{298k}} / \mathbf{eV}$
⁴ V + ³ O	(1a) ⁴ VO	-6.303	-6.059
⁴ V + ³ O ₂	(1b) ¹ VO ₂	-6.418	-6.138
	(1c) ¹ VO + ³ O	-1.192	-1.128
³ V ₂ + ³ O ₂	(2a) ⁵ V ₂ O ₂	-8.334	-7.994
	(2b) $^{4}V + {}^{2}VO_{2}$	-5.262	-5.263
	(2c) ⁴ VO + ⁴ VO	-6.339	-6.403
	(2d) ${}^{5}V_{2}O + {}^{3}O$	-0.774	-0.770
⁶ V ₃ + ³ O ₂	(3a) ⁴ V ₃ O ₂	-10.166	-9.653
	(3b) ${}^{4}V + {}^{5}V_{2}O_{2}$	-6.741	-6.594
	(3c) $^{4}VO + {}^{5}V_{2}O$	-5.484	-5.430
	(3d) $^{2}VO_{2} + {}^{4}V_{2}$	-4.825	-4.738
	(3e) ⁴ V ₃ O + ³ O	-2.532	-2.389
³ V ₄ + ³ O ₂	(4a) ⁷ V ₄ O ₂	-10.050	-8.807
	(4b) ${}^{4}V + {}^{4}V_{3}O_{2}$	-8.149	-8.040
	(4c) $^{4}VO + {}^{4}V_{3}O$	-6.817	-6.835
	(4d) ${}^{3}V_{2} + {}^{5}V_{2}O_{2}$	-5.879	-5.856
	(4e) ${}^{6}V_{3} + {}^{2}VO_{2}$	-4.440	-4.524
	(4f) ${}^{5}V_{2}O + {}^{5}V_{2}O$	-4.205	-4.243
	(4g) ${}^{3}V_{4}O + {}^{3}O$	-2.225	-2.113

Table S3. Calculated reaction energies ($\Delta E/eV$, ZPVE Corrected energies) and Gibbs free energies ($\Delta G_{298k}/eV$) for the different dissociation channels of neutral V_n (n=1-4) clusters with oxygen at B3LYP-D3/TZVP Level.

[a] Spin multiplicities are marked as pre-superscripts.

[b] ZPVE Corrected Energies for the isomers of the above species are given in Table S1.

[c] The structures of the selected isomers are given in Fig. S3.

S6. Reaction Dynamics

Reaction coordinate

Fig. S4. Reaction energy diagrams of **(A)** V+O₂ \rightarrow VO₂, **(B)** VO + O₂ \rightarrow VO₃, and **(C)** VO₃ + VO₂ \rightarrow V₂O₅, calculated at B3LYP/TZVP level with DFT-D3 dispersion correction. The energy values are relative to the entrance channel, denoted as zero-point vibration corrected energies, and given in eV. Spin multiplicity is marked as pre-superscript. Hollow circle denotes a possible spin inversion point for reaction paths.

Fig. S5 The calculated Reaction energy diagrams at BP86/def2TZVP level of theory. (A) $V + O_2 \rightarrow VO_2$, (B) $VO + O_2 \rightarrow VO_3$. The energy values are relative to the entrance channel, denoted as zero-point vibration corrected energies, and given in eV. Spin multiplicity is marked as pre-superscript.

S7. Charge Decomposition Analysis (CDA)

	Table S4. Charge Decomposition Analysis (CDA) result of VO $_3^+$												
d = th	d = the number of electrons donated from fragment.1 to fragment.2 fragment.1=VO ⁺ fragment.2=O ₂												
b = th	b = the number of electrons back donated from fragment.2 to							Oc	- c.=1.0 occupi	ed Occ.=0.0) unoccupied		
r = th	r = the number of electrons involved in repulsive polarization							Or	b. =molecula	r orbitals of `	VO ₃ ⁺		
Result for alpha electrons								Result	t for beta el	ectrons			
Orb.	Occ.	d	b	d-b	r	Orb.	Occ.	d	b	d-b	r		
1	1.0	-0.000001	0.000000	-0.000001	-0.000001	1	1.0	-0.000001	0.000000	-0.000001	-0.000001		
2	1.0	0.000039	-0.000001	0.000040	0.000047	2	1.0	0.000043	-0.000001	0.000044	0.000040		
3	1.0	-0.000010	-0.000787	0.000777	-0.000050	3	1.0	-0.000011	-0.000794	0.000784	-0.000030		
4	1.0	-0.000010	-0.000778	0.000768	-0.000046	4	1.0	-0.000011	-0.000784	0.000773	-0.000030		
5	1.0	0.000006	-0.000001	0.000007	0.000003	5	1.0	0.000006	-0.000001	0.000007	0.000002		
6	1.0	0.000076	-0.000039	0.000115	0.000064	6	1.0	0.000080	-0.000040	0.000120	0.000062		
7	1.0	0.000041	0.000000	0.000042	0.000003	7	1.0	0.000037	-0.000002	0.000038	0.000014		
8	1.0	0.000019	-0.000010	0.000029	0.000020	8	1.0	0.000020	-0.000010	0.000030	0.000019		
9	1.0	-0.000147	-0.000048	-0.000099	0.004788	9	1.0	0.000005	-0.000032	0.000037	0.004447		
10	1.0	0.001421	-0.001038	0.002459	0.028525	10	1.0	0.001756	-0.001077	0.002834	0.027940		
11	1.0	0.000194	-0.000083	0.000277	0.002128	11	1.0	0.000164	-0.000103	0.000267	0.002225		
12	1.0	0.002175	-0.000065	0.002239	0.002512	12	1.0	0.000429	-0.000164	0.000594	0.006086		
13	1.0	0.000305	0.017789	-0.017484	-0.041010	13	1.0	-0.000446	0.024372	-0.024818	-0.053270		
14	1.0	0.000221	0.000079	0.000142	-0.000780	14	1.0	0.000215	0.000085	0.000130	-0.000782		
15	1.0	0.001109	0.001117	-0.000009	0.028148	15	1.0	-0.000193	0.022198	-0.022390	-0.010923		
16	1.0	0.000316	0.016375	-0.016059	0.021693	16	1.0	0.000036	0.026043	-0.026007	0.001422		
17	1.0	0.008185	0.028053	-0.019868	-0.044462	17	1.0	0.004605	0.029425	-0.024819	-0.044062		
18	1.0	-0.001213	0.023781	-0.024994	0.076923	18	1.0	0.000288	0.036023	-0.035735	0.046549		
19	1.0	0.013176	-0.000865	0.014041	-0.010550	19	1.0	0.001851	0.004329	-0.002477	0.007003		
20	1.0	-0.000198	0.004669	-0.004867	-0.010083	20	1.0	-0.000054	0.002608	-0.002662	-0.006562		
21	1.0	0.010489	0.012145	-0.001656	-0.085938	21	1.0	-0.002291	0.012903	-0.015194	-0.061964		
22	1.0	0.045743	0.003172	0.042571	-0.057248	22	1.0	-0.000911	0.036206	-0.037118	-0.018735		
23	1.0	-0.007386	-0.001276	-0.006110	0.000713	23	1.0	-0.000415	0.028443	-0.028857	-0.018222		
24	0.0	0.000000	0.000000	0.000000	0.000000	24	0.0	0.000000	0.000000	0.000000	0.000000		
25	0.0	0.000000	0.000000	0.000000	0.000000	25	0.0	0.000000	0.000000	0.000000	0.000000		
26	0.0	0.000000	0.000000	0.000000	0.000000	26	0.0	0.000000	0.000000	0.000000	0.000000		
27	0.0	0.000000	0.000000	0.000000	0.000000	27	0.0	0.000000	0.000000	0.000000	0.000000		

d = th d = th	= the number of electrons donated from fragment.1 to fragment.2 fragment.1=VO ₃ ⁺ fragment.2=VO ₂ = the number of electrons back donated from fragment.2 to fragment .1 Occ.=1.0 occupied Occ.=0.0 unoccupied											
· = th	e num	ber of electr	ons involved	in repulsive	polarization	1		Orb	. =molecular	orbitals of V	$V_2 O_5^+$	
Result for alpha electrons							Result for beta electrons					
Orb.	Occ.	d	b	d-b	r	Orb.	Occ.	d	b	d-b	r	
1	1.0	0.000006	0.000000	0.000006	0.000001	1	1.0	0.000006	0.000000	0.000007	0.000000	
2	1.0	-0.000001	0.00008	-0.000009	0.000004	2	1.0	-0.000002	0.00008	-0.000010	0.000004	
3	1.0	-0.000517	-0.000032	-0.000485	-0.000161	3	1.0	-0.000580	-0.000019	-0.000562	-0.000036	
4	1.0	-0.000096	-0.000545	0.000449	-0.000369	4	1.0	-0.000116	-0.000534	0.000418	-0.000333	
5	1.0	-0.000001	0.000001	-0.000002	-0.000001	5	1.0	-0.000002	0.000001	-0.000002	-0.000001	
6	1.0	-0.000001	-0.000001	0.000000	-0.000001	6	1.0	-0.000001	-0.000001	0.000000	0.000000	
7	1.0	-0.000429	-0.000014	-0.000414	-0.000277	7	1.0	-0.000547	-0.000009	-0.000538	-0.000037	
8	1.0	-0.000268	-0.000001	-0.000267	-0.000003	8	1.0	-0.000267	-0.000001	-0.000267	-0.000003	
9	1.0	0.000006	-0.000001	0.000006	0.000001	9	1.0	0.000006	0.000000	0.000006	0.000000	
10	1.0	0.000001	0.000000	0.000001	-0.000001	10	1.0	0.000001	0.000000	0.000001	-0.000001	
11	1.0	-0.000004	0.000000	-0.000004	0.000000	11	1.0	-0.000004	0.000000	-0.000004	0.000000	
12	1.0	-0.00008	-0.000001	-0.000007	-0.000002	12	1.0	-0.000009	0.000000	-0.000008	-0.000001	
13	1.0	-0.000001	0.000035	-0.000036	0.000009	13	1.0	-0.000001	0.000035	-0.000037	0.000009	
14	1.0	-0.000004	0.000047	-0.000051	0.000023	14	1.0	-0.000005	0.000048	-0.000053	0.000025	
15	1.0	0.000000	0.000000	0.000000	-0.000001	15	1.0	0.000000	0.000000	0.000000	-0.000001	
16	1.0	-0.002252	0.000063	-0.002315	-0.000486	16	1.0	-0.002457	0.000117	-0.002574	0.000117	
17	1.0	-0.000194	-0.003015	0.002821	-0.000577	17	1.0	-0.000284	-0.003122	0.002838	-0.000714	
18	1.0	0.000214	0.000180	0.000034	0.005494	18	1.0	0.000259	0.000232	0.000027	0.007527	
19	1.0	0.000206	-0.000068	0.000274	0.000435	19	1.0	0.000123	-0.000071	0.000194	0.000313	
20	1.0	0.000012	0.000000	0.000012	0.000267	20	1.0	0.000011	0.000002	0.000009	0.000331	
21	1.0	-0.000103	0.000030	-0.000133	0.001047	21	1.0	-0.000059	0.000056	-0.000116	0.000225	
22	1.0	-0.000167	0.000027	-0.000194	0.002424	22	1.0	-0.000194	0.000047	-0.000241	0.001366	
23	1.0	-0.000152	0.001698	-0.001850	0.005664	23	1.0	-0.000117	0.001695	-0.001812	0.005464	
24	1.0	0.015284	-0.000511	0.015796	0.009842	24	1.0	0.022492	-0.000855	0.023347	-0.017897	
25	1.0	0.012489	-0.000656	0.013144	-0.007581	25	1.0	0.013296	-0.000682	0.013978	-0.008425	
26	1.0	-0.002767	-0.002582	-0.000186	-0.023242	26	1.0	0.000268	-0.000347	0.000615	0.000465	
27	1.0	-0.000925	-0.000686	-0.000239	-0.004966	27	1.0	-0.002771	-0.002616	-0.000155	-0.012159	
28	1.0	0.001041	0.000104	0.000937	0.000123	28	1.0	-0.000405	-0.000299	-0.000107	-0.001284	
29	1.0	0.011133	0.002575	0.008558	0.006116	29	1.0	0.020719	0.002562	0.018157	-0.003260	
30	1.0	0.020051	0.001205	0.018846	-0.007671	30	1.0	0.020830	0.000456	0.020373	-0.008125	
31	1.0	0.006402	0.001775	0.004627	0.055699	31	1.0	0.012083	0.001524	0.010559	0.048049	
32	1.0	-0.005235	0.001109	-0.006344	0.058974	32	1.0	0.025879	0.001800	0.024079	-0.000297	
33	1.0	0.011626	-0.001284	0.012911	-0.013598	33	1.0	0.003456	0.002927	0.000528	0.014626	
34	1.0	0.001419	0.004266	-0.002848	0.020320	34	1.0	0.004125	0.002850	0.001276	0.022835	
35	1.0	0.002228	0.003905	-0.001677	0.025353	35	1.0	-0.001332	0.001618	-0.002950	-0.008065	
36	1.0	0.004649	-0.000892	0.005541	-0.027816	36	1.0	0.002247	-0.000128	0.002376	-0.007591	
37	10	-0 002/192	0 00179/	-0 004285	0 018063	27	1.0	0.005203	0.000467	0.004736	0.002408	

38	1.0	0.003744	0.009121	-0.005377	-0.024793	38	1.0	-0.000189	0.010124	-0.010313	-0.016329
39	1.0	0.000698	-0.006910	0.007607	-0.024851	39	1.0	0.001104	-0.007052	0.008157	-0.060265
40	1.0	0.004914	-0.003172	0.008086	-0.025061	40	1.0	0.009127	-0.004382	0.013509	-0.024923
41	1.0	0.009169	-0.008491	0.017659	-0.023653	41	1.0	0.019121	-0.001117	0.020239	-0.030607
42	1.0	0.027002	-0.001542	0.028545	-0.053971	42	1.0	-0.001290	-0.017208	0.015918	-0.009553
43	1.0	0.000394	-0.014118	0.014512	-0.009914	43	0.0	0.000000	0.000000	0.000000	0.000000
44	0.0	0.000000	0.000000	0.000000	0.000000	44	0.0	0.000000	0.000000	0.000000	0.000000
45	0.0	0.000000	0.000000	0.000000	0.000000	45	0.0	0.000000	0.000000	0.000000	0.000000
46	0.0	0.000000	0.000000	0.000000	0.000000	46	0.0	0.000000	0.000000	0.000000	0.000000
47	0.0	0.000000	0.000000	0.000000	0.000000						
			•••••								

References:

- 1. C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu and J. Yao, *Rev. Sci. Instrum.*, 2016, **87**, 024102-024110.
- 2. H. Wu, C. Yuan, H. Zhang, G. Yang, C. Cui, M. Yang, W. Bian, H. Fu, Z. Luo and J. Yao, *Anal Chem*, 2018, **90**, 10635-10640.
- 3. H. Wu, M. Guo, M. Yang, Z. Luo and K. Hansen, *Chem Commun (Camb)*, 2019.