Supporting Information

Improved Phase Stability of CsPbI₃ Perovskite via Organic Cation

Doping

Jiajia Zhang,* Lei Yang, Yu Zhong, Hequn Hao, Mei Yang, and Renyong Liu

College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, People's Republic of China

Table S1. Calculated lattice parameters, cell volumes and band gaps of $CsPbI_3$ with and without spinorbit coupling (SOC) for cubic α and orthorhombic δ unit cells. The experimental values are also presented for comparison.

		a (Å)	b (Å)	c (Å)	Volume (Å ³)	Band gap (eV)
α	PBE	6.364			257.8	1.50
	PBE+SOC	6.664			296.0	0.65
	Exp. ¹	6.289			248.7	1.70
δ	PBE	10.630	4.874	18.077	936.5	2.50
	PBE+SOC	11.751	5.131	19.112	1152.3	2.00
	Exp. ^{2,3}	10.434	4.791	17.761	887.9	2.82

Table S2. Calculated energy differences between α and δ phases ($\Delta E = E_{\alpha} - E_{\delta}$) for pure CsPbI₃ and M_xCs_{1-x}PbI₃ (M= DMA⁺, EA⁺ or GA⁺; x=0.125) with first-principles molecular dynamics simulations at 100, 200 and 300 K. (Unit: eV/formula unit)^a

	pure	DMA^+	EA^+	GA^+
100 K	0.24	0.08	0.14	0.11
200 K	0.23	0.07	0.13	0.17
300 K	0.19	-0.14	0.14	0.12

^aAll molecular dynamics simulations in NPT ensemble are performed using VASP code.⁴ Because the simulations are time consuming, the total simulation time is set to 1.5 ps with a time step of 2 fs for each system, which can reflect the change trend of phase stability of CsPbI₃ perovskite upon doping. The values are the averaged energies corresponding to the last 0.5 ps. Clearly, the energy differences between α and δ phases for the organic cation doped systems are lower than that of the pure CsPbI₃, regardless of the simulation temperature, indicating the improved stability for CsPbI₃ perovskite. In particular, DMA⁺ is more efficient in reducing the energy differences of α and δ phases than EA⁺ and GA⁺, and even invert the energy order of the two phases at 300 K. These results are in agreement with the change trend of the predicted α -to- δ phase transition temperature upon organic cation doping, where all dopants can lower the transition temperature of CsPbI₃ and DMA⁺ is found to be particularly effective.

Figure S1. Diagram of bonding (σ) and antibonding (σ^*) orbitals in APbI₃ (A is monovalent cation). Reprinted from Ref. 5 with permission of Materials Research Society, Copyright 2015. The interaction between Pb(6*p*) and I(5*p*) leads to the creation of middle part of valence band, which is mainly contributed by I(5*p*), and the bottom part of conduction band, which is composed of Pb(6*p*). This indicates that the charge transfers from Pb(6*p*) to I(5*p*), which is the feature of ionic bonding. The overlap of Pb(6*s*) and I(5*p*) creates a pair of bonding/antibonding orbital. The bonding orbital is at the deep part of valence band, while the antibonding one constitutes the valence band maximum, which is commonly contributed by Pb(6*s*) and I(5*p*). Thus, Pb(6*s*) has covalent coupling with I(5*p*). Overall, CsPbI₃ perovskite is a mixed ionic and covalent compound.

Supporting References:

- 1 D. M. Trots and S. V. Myagkota, J. Phys. Chem. Solids, 2008, 69, 2520-2526.
- 2 C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg. Chem., 2013, 52, 9019–9038.
- 3 G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, J. Mater. Chem. A, 2015, 3, 19688–19695.
- 4 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 5 R. E. Brandt, V. Stevanovic, D. S. Ginley and T. Buonassisi, MRS Commun. 2015, 5, 265-275.