Multi-Scale Modeling of Early-Stage Morphology in Solution-Processed Polycrystalline Thin Films

David L. Patrick^{*,1}, Cyrus Schaaf,¹ Robell Morehouse,¹ and Brad L. Johnson²

¹Department of Chemistry, Western Washington University, 516 High St., Bellingham, WA, 98225

²Department of Physics, Western Washington University, 516 High St., Bellingham, WA, 98225

SUPPORTING INFORMATION

Computational details. The monomer concentration at each lattice site at each new time $L(i,j,t + \delta_t)$ is found from the concentration at the previous time by numerically solving the 2D diffusion equation,

 $L(i,j,t+\delta_t) = L(i,j,t) + K(L(i-1,j,t) + L(i+1,j,t) + L(i,j-1,t) + L(i,j+1,t) - 4L(i,j,t)) + F\delta_t$

applying periodic boundaries. Here $K = D\tau/(\Delta_{xy})^2$, $D = 4.22 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$ is the diffusion coefficient, $\delta_t = 2.37 \times 10^{-5} \text{ s}$ is the size of the timestep, $\Delta_{xy} = 1 \text{ µm}$ is the edge length of a lattice site, and the flux rate F = 1,797 monomers $\mu \text{m}^{-2} \text{ s}^{-1}$. For numerical stability the timestep is chosen to make $K \ll 1$ (here K = 0.01). For lattice sites occupied by a crystal, the concentration is held fixed at the bulk saturation value, $n_0 = 3.36 \times 10^{23} \text{ m}^{-3}$.

Video 1. Epifluorescence videomicroscopy sequence acquired *in situ* during film deposition showing a portion of the induction regime, the entire nucleation regime, and the early part of the growth regime. Each bright object is a single TET crystal. Field of view 2.44×2.44 mm. The frame rate is 0.2 s^{-1} . Data in Figures 1 and 2 are based on measurements taken from a 1.8×1.2 mm subregion centered near the middle of the field of view of Video 1.

Video 2. Computed evolution of the monomer concentration landscape during the nucleation regime. Field of view 2×2 mm. Frames are in 2 s intervals beginning at t = 91 s. Brightness is proportional to concentration.

Video 3. Same data as Video 2, rendered in 3D perspective.