Electronic Supplementary Information

J-aggregates of Zinc Tetraphenylporphyrin: a New Pathway to Excellent Electrochemiluminescence Emitter

Zhaofan Yang,^{a,b} Guiqiang Pu,^a Xingming Ning,^b Yali Wu,^a Zhen Zhang,^b Duoliang Shan ^a and Xiaoquan Lu*^{a,b}

^a Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.

^b Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China.

Figure S1. Nuclear magnetic resonance spectroscopy (¹H NMR) of zinc tetraphenylporphyrin (ZnTPP).

Figure S2. Absorption spectra of H- (a, b) and J-aggregates (c, d) with concentration of 7.5×10^{-7} M in a series of mixed solvents (solvent content as indicated; dash line, colorful lines spectra correspond to monomer, aggregates, respectively).

Figure S3. Concentration-dependent absorption spectra of aggregates in binary solvent of trichloromethane /cyclohexane (1:19, v/v) (a, b) and trichloromethane / methanol (19:1, v/v) (c, d) at room temperature.

Figure S4. Concentration-dependent absorption spectra of aggregates in binary solvent of trichloromethane /cyclohexane (1:19, v/v) (a, b, c) and trichloromethane / methanol (19:1, v/v) (d, e, f) at room temperature.

Figure S5. Fluorescence lifetime of H-aggregates (red line) and J-aggregates (black line), which were recorded at excitation wavelength of 420 nm.