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Supplementary Information

S1. Temperature selection for a-C-to-graphene transformation

In order to define the temperature for studying the diffusion behavior, the Ni@a-C system with Ni/C
atomic ratio of 1/1 is used. The temperature increases from 300 to 2400 K by stepwise heating method,
and the system is diffused at each temperature for 100 ps. At each temperature, the diffusion behavior
of C and Ni atoms and corresponding structural evolution of Ni@a-C system are evaluated.

Evolution of Kinetic energy (KE) and potential energy (PE)
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Fig. S1. Evolution of both kinetic energy (KE) and potential energy (PE) as a function of diffusion time.

Diffusion behavior and structural transformation at different temperatures
In order to evaluate the diffusion behavior at each temperature, the mean-squared displacement (MSD)

is estimated as follows:

MSD =r(1) =%<Zln(z)—nm)l2> (1)

i=1
where, N is the number of i atoms in the system, r(t) is the position of the i atom at t moment, and r{0)
is the position of the i atom at t=0 moment. From the MSD (Fig. S2) and the change in C and Ni atomic
fractions along the diffusion couple direction (Fig. S3), we find that at 300K, the clear sharp interfaces

separating a-C and Ni can be observed. When the temperature is located at the range of 300~1500 K, the
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interatomic interaction already causes some local atomic movement at the interface, the atoms at
interface mix together and the sharp interface becomes a bit fuzzy (Fig. S3), so the obvious C-Ni transition
layer is formed, while the MSD for Ni or C almost has no change, indicating the solid state of a-C and Ni
layers. As increasing the temperature to 1500 K, the MSD curves for C and Ni atoms begin to increase
obviously with diffusion time, but there are still only few C atoms diffusing into Ni layers during the time
of 100 ps. With the temperature further increased to be higher than 1500 K, the MSD for C and Ni atoms
increase significantly and more C atoms can further diffuse into Ni structure to form a diffusion zone,

indicating the serious change in structure.
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Fig. S2. MSD for C and Ni atoms as a function of diffusion time at each temperature.
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Fig. S3. Distributions of C and Ni atomic fractions along the diffusion couple direction and corresponding morphologies

after diffusion time of 100 ps at each temperature.

Fig. S4 gives the change in 4- and 3-coordinated C fractions with temperature. It can be seen that when
the temperature increases from 300 to 1800 K, the 3-coordinated C fraction increases significantly
following the decrease of 4-coordinated C fraction; however, as the temperature further reaches to be
higher than 1800 K, the dissolution of graphitic structure into Ni layer causes the reduction of 3-
coordinated C fraction, which is not favorable to the formation of graphene structure. Based on the
abovementioned analysis of diffusion behavior of C and Ni atoms and the evolution of hybridization
structure, the temperature to study the a-C-to-graphene transformation is suggested to be 1500<T<1800

K. However, by further extending the diffusion time of system at 1500 or 1800 K to 1350 ps, Fig. S5
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illustrates that more C atoms diffuse into Ni layer when the temperature is 1800 K, while only few C atoms
diffuse into Ni layer at 1500 K. Therefore, in order to investigate the diffusion of C into Ni and the a-C-to-
graphene transformation during the short molecular dynamics (MD) simulation time, the temperature of

1800K is adopted in the present work for the following calculations.
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Fig. S4. Hybridization fraction of a-C structure with temperature.
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Fig. S5. Distributions of C and Ni atomic fractions along the diffusion couple direction when the system is diffused at

1500 K and 1800K for 1350 ps, respectively.
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S2. Validation for ReaxFF potential

ReaxFF potential developed by Mueller et al. is used to describe the interaction between the C and Ni
atoms, which is able to model the bond forming/breaking, atom arrangement/rehybridization, chemical
reactions and phase transformation accurately in carbon-based structures. Although it has been proved
to be suitable for our system in previous calculation, many additional calculations for this potential
including the fabrication of a-C structure (Fig. S6) using quenching method,? the temperature-dependence
of formation energy of a-C structure (Fig. S7), the formation energies of a-C structures with different
densities (Fig. S8), the energy changes of diamond, Ni crystal, and a-C induced by expansion and
compression of supercell size (Fig. S9), the surface energy of Ni crystal (Fig. S10), and the formation
energies of Ni-C mixing structures generated at the different stages of the quenching process (Fig. S11)
are further performed by ReaxFF MD and ab-initio calculations®* separately to validate the reliability of
the used ReaxFF potential. They clearly display that the a-C structure is well reproduced compared to our
and previous density function theory (DFT) calculations®>2 and experiment results,>° as shown in Fig. S6;
the energy changes from ReaxFF are also consistent with those from ab-initio calculations in Fig. S7~S10,
and the changes of both the formation energy and radial distribution function (RDF) spectra in Fig. S11
indicate that the Ni-C interaction can be accurately described compared to the ab-initio results, suggesting

the validity of the force field for our simulated Ni@a-C systems.
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Fig. S6. Fabrication of a-C structure by ReaxFF MD simulation using quenching method. The results are compared with
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Fig. S7. Temperature-dependence of formation energy of a-C structure calculated by ReaxFF MD and ab-initio
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Fig. $8. Formation energies of a-C structures with different densities calculated by ReaxFF MD and ab-initio calculations,

respectively.
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Fig. S9. Energy changes of diamond, Ni crystal, and a-C induced by expansion and compression of supercell size, which
were calculated by ReaxFF MD and ab-initio calculations, respectively. The experimental values are also give for

comparison.!
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Fig. S10. Surface energy of Ni crystal calculated by ReaxFF MD and ab-initio calculations, respectively. The experimental
values are also give for comparison.!
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Fig. S11. Formation energies and RDF spectra of Ni-C mixing structures generated at the different stages of quenching
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