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Section S1 General formalisms of Jahn-Teller and pseudo-

Jahn-Teller vibronic Hamiltonian operators

in trigonal symmetries

The feasibility of organizing general formalisms of Jahn-Teller and pseudo-Jahn-Teller vi-

bronic Hamiltonian operators in one type of axial symmetries in tables has been elaborated

on in Ref. 1. Here, we skip the detailed derivations and only present the tabulated formulas

for obtaining all bimodal JT and pJT Hamiltonians in all trigonal symmetries, i.e., the C3,

C3v, D3, C3h, D3h, and D3d symmetries. Please note the isomorphism between the C3v and

D3 groups, and the isomorphism between the D3h and D3d groups. D3h is a composite of

D3 and C3h. The σv-type symmetry elements in C3v are replaced by the C ′2-type symmetry

elements in D3. The σh in D3h is replaced by the I in D3d. In D3h and D3d, the subscript 1

and 2 of the A-type irreducible representation (irrep) indicates being even and odd, respec-

tively, with respect to Ĉ ′2, not σ̂v. This is why we consider D3h being a composite of D3 and

C3h, instead of C3v and C3h.

A Settings of states and vibrational modes

The tabulated formalisms are for a specific setting of electronic states and vibrational co-

ordinates. All electronic states are transformed to be eigenstates of Ĉ3. A-type states are

Ĉ3-eigenstates with the eigenvalue χC3 = 1. E-type states take a complex form, i.e.,

|±〉 =
1√
2

(|X〉 ± i |Y 〉) , (S1)

with |X〉 and |Y 〉 being the conventional real components that transform as the unit vectors

along the right-hand-rule x and y axes under the Ĉ3 rotation about the z axis. The complex
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E-type states satisfy the eigenvalue equations:

Ĉ3 |±〉 = e∓i
2π
3 |±〉 . (S2)

The so-defined complex components swap under the time-reversal operation. They are fur-

ther defined so that the they swap under σ̂v and Ĉ ′2.

The a-type vibrational coordinate is represented by z. The polar coordinates ρ and φ

are used to describe e-type vibration. They are related to the conventional cartesian e-type

coordinates x and y as x = ρ cosφ and y = ρ sinφ. Figure S1 exemplifies the cartesian

components of the e-type vibrations and the real components of the E-type states in the

six trigonal symmetries. Please note that the tabulated formalisms are applicable

strictly to the E-type states and E-type vibrations that orient following the

same conventions in Figure S1. Specifically, Ĉ3 |X〉 = −1
2
|X〉 +

√
3
2
|Y 〉; Ĉ3 |X〉 =

−1
2
|Y 〉 −

√
3
2
|X〉, and the similar transformations for the e components. Also, the

|X〉 and ex must be symmetric with respect to the demonstrated Ĉ ′2 operation

in D3, D3h, and D3d symmetries, and with respect to the demonstrated σ̂v in C3v

symmetry. The |Y 〉 and ey must be antisymmetric correspondingly.

B General forms of the vibronic Hamiltonians in trigonal symme-

tries

JT and pJT Hamiltonian operators are usually resolved in a set of strongly interacting

states in a diabatic representation. When the states are degenerate at the undistorted high

symmetry configuration, their vibronic coupling gives the JT effect. When they are non-

degenerate, their coupling gives the pJT effect. Since the couplings in the JT interaction are

between states belonging to the same term symbol, we call this type of couplings intra-term

couplings. Following the same logic, we call the vibronic couplings in pJT interaction inter-

term couplings. Figure S2 exemplifies the two types of coupling using two sets of E-type
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Figure S1: Examples of orientations of e and E components, on which the derivations are
based. Atomic motions in the modes are represented by solid arrows. With the atom labelling

in panel (a), ex =
√

1
6

(2∆rAB1 −∆rAB2 −∆rAB3), and ey =
√

1
2

(∆rAB2 −∆rAB3). Similar

definitions apply to the displayed e modes in the other panels.

states. Throughout this work, we use the greek letters α and β to differentiate states or

modes with the same irreducible representations. Please do not mistake them for electronic

spin functions.

Since there are two types of irreps in trigonal symmetries, A and E, there are two types

of intra-term couplings and three types of inter-term couplings: (A+ A), (E + A), and
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Figure S2: The matrix product form of a vibronic coupling Hamiltonian that involves two
E term symbols denoted by α and β. The green and blue diagonal blocks of the H matrix
give the intraterm couplings, and the red off-diagonal blocks give the interterm coupling.

(E + E). These vibronic couplings have the following respective forms of Hamiltonians:

1. For (A+ A)-type couplings, Ĥ = |Aα〉 〈Aβ|Hr
AαAβ

, with the states and the matrix

element being real (denoted by the superscript r). The A-type coupling takes the

same form of Hamiltonian.

2. For (E + A)-type couplings, Ĥ = (|+〉 〈A|+ |A〉 〈−|)H+A + hc. hc stands for the

hermitian conjugate of the explicitly written part of the Hamiltonian. H+A is complex-

valued. The fact that the |+〉 〈A| and |A〉 〈−| dyads share the same matrix element

is determined by the time-reversal symmetry of the Hamiltonian, in the absence of an

external magnetic field. This reason also applies to all parenthesized pairs of dyads in

the Hamiltonians below. It will not be repeated.

3. For (E + E)-type couplings,

Ĥ = (|+α〉 〈+β|+ |−β〉 〈−α|)H+α+β +(|+α〉 〈−β|+ |+β〉 〈−α|)H+α−β +hc. The matrix

elements are complex-valued.

4. For E-type couplings, Ĥ = (|+〉 〈+|+ |−〉 〈−|)Hr
++ + |+〉 〈−|H+− + |−〉 〈+|H∗+−.

Again, the r superscript indicates that H++ is real-valued.

Only independent Hamiltonian matrix elements are kept in those Hamiltonian operator ex-

pressions. The construction of a JT or pJT Hamiltonian is to find the symmetry-adapted

expansion formulas of the matrix elements in vibrational coordinates of the relevant vibra-

tional modes.
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C Symmetry requirements on the matrix elements

The only requirement on the Hamiltonian operators is that they must be invariant with

respect to all symmetry operations of the relevant point groups. Actually, they only need to

be invariant with respect to representation operations. The representative operations are:

Ĉ3 for all the six point groups; one of the three σ̂vs (Ĉ ′2s) in C3v (D3, D3h, and D3d); σ̂h in

C3h and D3h; Î in D3d.

Since all the bras and kets in the Hamiltonians are Ĉ3-eigenstates, to have the Hamiltoni-

ans to be Ĉ3-invariant, their matrix elements must be Ĉ3-eigenfunctions, with the eigenvalues

that are reciprocal of the products of the Ĉ3-eigenvalues of the corresponding bras and kets.

These Ĉ3-eigenvalues (χC3s) of all the independent matrix elements are summarized in Ta-

ble S1. In C3v symmetry, σ̂v swaps |+〉 and |−〉 and hence imposes constraints on the matrix

elements, that they need to satisfy σ̂vHij = H∗ij or σ̂vHij = −H∗ij. The matrix elements do

not in general need to be σ̂v-eigenfunctions, but their real and imaginary parts do need to be.

The required σ̂v-eigenvalues of the matrix elements’ real and imaginary parts, (χσvRe, χ
σv
Im)s,

are summarized in Table S1. Note that χσvIm = 0 indicates that the matrix element is real-

valued. In D3 symmetry, the role of σ̂v is replaced by Ĉ ′2. All the other arguments still apply.

The same set of
(
χ
C′

2
Re, χ

C′
2

Im

)
s are also given in the table.

Table S1: The eigenvalues of symmetry operators of the independent elements in trigo-
nal vibronic Hamiltonian matrices. The σ̂v- and Ĉ2-eigenvalues are given for the real and
imaginary parts of the matrix elements separately. The heading (E + E) means the matrix
elements underneath are relevant to the (E + E) problems, etc. k and l stand for the 1 and
2 subscripts when σv or C ′2 are relevant. p and q stand for the ′ and ′′ superscripts when σh
is relevant. Although p and q are placed as superscripts, they also stand for possible g and
u subscripts when I is relevant.

(A+A)/A (E +A)

ij: χC3 , (χ
σv,C

′
2

Re , χ
σv,C

′
2

Im ),χσh,I ApkA
q
l : 1, ((−1)δkl+1, 0), (−1)

δpq+1
+pAqk: e

i2π
3 , ((−1)δk2 , (−1)δk1), (−1)

δpq+1

(E + E) E

ij: χC3 , (χ
σv,C

′
2

Re , χ
σv,C

′
2

Im ), χσh,I
+p
α+q

β : 1, (1,−1), (−1)
δpq+1

++:1, (1, 0) , 1

+p
α−

q
β :e−i

2π
3 , (1,−1), (−1)

δpq+1
+−:e−i

2π
3 , (1,−1) , 1
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In C3h, the bras and kets are σ̂h-eigenstates. Correspondingly, the matrix elements need

to be σ̂h-eigenstates with eigenvalues equal to the products of those of the associated bras and

kets. The required σ̂h-eigenstates are also summarized in Table S1. To summarize, for a JT

or pJT Hamiltonian operator in C3 symmetry, its matrix elements need to have the specific

χC3s; in C3v symmetry, χC3s and (χσvRe, χ
σv
Im)s; in D3 symmetry, χC3s and

(
χ
C′

2
Re, χ

C′
2

Im

)
s; in C3h

symmetry, χC3s and χσhs; in the composite D3h symmetry, χC3s,
(
χ
C′

2
Re, χ

C′
2

Im

)
s, and χσhs; in

D3d symmetry, χC3s,
(
χ
C′

2
Re, χ

C′
2

Im

)
s, and χIs. In short, the invariance requirement of the JT

and pJT Hamiltonian operators has been translated into the symmetry-eigenvalues of the

independent matrix elements. The construction of a JT or pJT Hamiltonian is hence to find

the expansions of the matrix elements in relevant vibrational coordinates, and the expansions

need to be eigenfunctions of the symmetry operators with the appropriate eigenvalues. We

call those expansions symmetry-adapted expansions.

D Symmetry-adapted expansions

The symmetry-adapted expansions of the different combinations of vibrational coordinates

can be obtained using projection operators. The procedure is detailed in Ref. 1 and is not

repeated here. We provide the symmetry-adapted expansion formulas for bimodal JT and

pJT Hamiltonians, i.e., the problems that involve two sets of vibrational modes such as

E ⊗ (e+ a) , (E + A) ⊗ (e+ e), etc. Unimodal expansions are special cases of the bimodal

expansions with one set of coordinates being set to be zero. Hamiltonian operators involving

more than two modes can be approximated as combinations of bimodal Hamiltonians. For

instance, the (E ′ + E ′) ⊗ (e′′ + a′1 + a′2) problem in D3h symmetry can be approximated as

the combinations of the (E ′ + E ′)⊗(e′′ + a′1), (E ′ + E ′)⊗(e′′ + a′2), and (E ′ + E ′)⊗(a′1 + a′2)

problems.

The bimodal expansions with χC3 = 1 and ei
2π
3 are given in Tables S2 and S3, respectively.

Einstein’s convention of summing over duplicate indices is applied in those expansions and

throughout the whole work. a and b are the expansion coefficients. The I, m, and n are
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summation indices. Whenever they appear in the absolute value signs, they take all integer

values. Otherwise, they only take nonzero integer values. The superscripts r and i of the

a and b coefficients indicate that the coefficients arise from the real and imaginary parts,

respectively, of the coefficients without the superscripts. ar, ai, br, and bi are all real. We do

not provide the expansions with χC3 = e−i
2π
3 , although this χC3 appears in Table S1. This

is because they are just the complex conjugates of the expansions with χC3 = ei
2π
3 .

We call the expansions in Tables S2 and S3 root formulas. They are expansions for the

JT and pJT Hamiltonians in the lowest C3 symmetry (root). Expansions for Hamiltonians

in the higher trigonal symmetries are obtained by imposing constraints onto them, so that

the resultant expansions also bear eigenvalues of the symmetry operators in addition to Ĉ3.

Table S2: Expansion formulas for Ĉ3-eigenfunctions of the bimodal vibrational coordinates
with eigenvalue 1.

Modes Expansion formulas

(a+ a) arI1,I2z
I1
α z

I2
β + iaiI3,I4z

I3
α z

I4
β

(e+ a)
a3mI,2Kz

Iρ|3m|+2Kei3mφ = ρ|3m|+2K [ar,3mI1,2K
zI1 cos(3mφ)− ai,3mI2,2K

zI2 sin(3mφ)

+i
(
ar,3mI1,2K

zI1 sin(3mφ) + ai,3mI2,2K
zI2 cos(3mφ)

)]
(e+ e)

am,3n2K1,2K2
ρ
|m|+2K1
α ρ

|3n−m|+2K2

β ei(mφα+(3n−m)φβ) = ρ
|m|+2K1
α ρ

|3n−m|+2K2

β[
(ar,m,3n2K1,2K2

cos(mφα + (3n−m)φβ)− ai,m,3n2K1,2K2
sin(mφα + (3n−m)φβ))

+i(ar,m,3n2K1,2K2
sin(mφα + (3n−m)φβ) + ai,m,3n2K1,2K2

cos(mφα + (3n−m)φβ))
]

Table S3: Expansion formulas for Ĉ3-eigenfunctions of the bimodal vibrational coordinates
with eigenvalue ei

2π
3 .

Modes Expansion formulas
(a+ a) not applicable (na)

(e+ a)
b3n−1I,2K z

Iρ|3n−1|+2Kei(3n−1)φ = ρ|3n−1|+2K
[
br,3n−1I1,2K

zI1 cos((3n− 1)φ)− bi,3n−1I2,2K
zI2 sin((3n− 1)φ)

+i
(
br,3n−1I1,2K

zI1 sin((3n− 1)φ) + bi,3n−1I2,2K
zI2 cos((3n− 1)φ)

)]
(e+ e)

bm,3n−12K1,2K2
ρ
|m|+2K1
α ρ

|3n−1−m|+2K2

β ei(mφα+(3n−1−m)φβ) = ρ
|m|+2K1
α ρ

|3n−1−m|+2K2

β[
br,m,3n−12K1,2K2

cos(mφα + (3n− 1−m)φβ)− bi,m,3n−12K1,2K2
sin(mφα + (3n− 1−m)φβ)

+i
(
br,m,3n−12K1,2K2

sin(mφα + (3n− 1−m)φβ) + bi,m,3n−12K1,2K2
cos(mφα + (3n− 1−m)φβ)

)]

The constraints that give the appropriate
(
χ
σv ,C′

2
Re , χ

σv ,C′
2

Im

)
s for JT and pJT Hamiltonians

in C3v and D3 symmetries are summarized in Tables S4 and S5. The constraints that
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give the appropriate χσhs for JT and pJT Hamiltonians in C3h symmetry are summarized in

Tables S6 and S7. Please note that the constraints in Tables S5 and S7 are also applicable for

the matrix elements with χC3 = e−i
2π
3 . For JT and pJT Hamiltonians in D3h symmetry, we

simply need to combine the constraints from all these tables, whichever applicable. Again,

the JT and pJT Hamiltonians in D3d symmetry share the same expansion formulas with

those in D3h, but with ′ and ′′ being correspondingly replaced by the subscripts g and u.

Table S4: Constraints on expansions in Table S2 to give the appropriate χ
σv ,C′

2
Re and χ

σv ,C′
2

Im .

When χ
σv ,C′

2
Im = 0, only the real part of the corresponding entry in Table S2 should be

considered.

Modes 1, (1, 0) 1, (−1, 0) 1, (1,−1)
(a1 + a1) nr† na na
(a1 + a2)‡ I2 even¶ I2 odd I2 even, I4 odd

(a2 + a2) I1, I2 ee or oo§ I1, I2 eo or oe£
I1, I2 ee or oo,
I3, I4 eo or oe

(e+ a1) cos nz# sin nz ar nz
(e+ a2) I1 even, I2 odd I1 odd, I2 even I1 even, I2 odd
(e+ e) cos nz sin nz ar nz

† “nr” means “no restriction”. ‡ For two modes whose irreps only differ in subscripts, α-subscripted
coordinates in Table S2 are for the first (a1 here) and β- for the second (a2 here) mode. ¶ I2 needs to be
even. § I1 and I2 need to be both even or both odd. £ When I1 is even, I2 must be odd, and vice versa. #

Only the terms associated with cosine factors are nonzero.

Table S5: Constraints on expansions in Table S3 to give the appropriate χ
σv ,C′

2
Re and χ

σv ,C′
2

Im .

Modes ei
2π
3 , (1,−1) ei

2π
3 , (−1, 1)

(e+ a1) br nz bi nz
(e+ a2) I1 even, I2 odd I1 odd, I2 even
(e+ e) br nz bi nz

S11



Table S6: Constraints on expansions in Table S2 to give the appropriate
(
χC3 = 1, χσh,I

)
.

The modes here are given for σh. The ′ and ′′ can be correspondingly replaced by the g and
u subscripts for the D3d symmetry.

Vibrational Modes (1, 1) (1,−1)
(a′ + a′) nr na

(a′ + a′′)† I2, I4 even I2, I4 odd

(a′′ + a′′)
I1, I2 ee or oo I1, I2 eo or oe
I3, I4 ee or oo I3, I4 eo or oe

(e′ + a′) nr na
(e′′ + a′) 3m even 3m odd
(e′ + a′′) I even I odd
(e′′ + a′′) 3m, I ee or oo 3m, I eo or oe
(e′ + e′) nr na
(e′′ + e′) m even m odd
(e′′ + e′′) 3n even 3n odd

† For two modes whose irreps only differ in subscripts, α-subscripted coordinates in Table S2 are for the
first (a′ here) and β- for the second (a′′ here) mode. This rule applies in all constraints tables.

Table S7: Constraints on expansions in Table S3 to give the appropriate
(
χC3 = ei

2π
3 , χσh,I

)
.

The modes here are given for σh. The ′ and ′′ can be correspondingly replaced by the g and
u subscripts for the D3d symmetry.

Vibrational Modes (ei
2π
3 , 1) (ei

2π
3 ,−1)

(e′ + a′) nr na
(e′′ + a′) 3n odd 3n even
(e′ + a′′) I even I odd

(e′′ + a′′)
3n even,I odd 3n even,I even
3n odd, I even 3n odd, I odd

(e′ + e′) nr na
(e′′ + e′) m even m odd
(e′′ + e′′) 3n odd 3n even
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Section S2 Expansion formulas of the JT and pJT Hamil-

tonians for the two lowest-lying E-type triplet

states of CO3.

This work is about simulating the lowest energy triplet band in the negative ion photo-

electron spectrum of CO−3 , and the two lowest triplet states of CO3 have the 3E ′′ and the

3E ′ term symbols. There are six vibrational modes in CO3, and they transform as a′1,

a′′2, e′, and e′ irreps. These symmetry-adapted internal vibrations are shown in Figure S3,

with their normalized coordinates being labelled as s1 to s6. The total vibronic problem

thus contains E ′′ ⊗ (a′1 + a′′2 + 2e′) and E ′ ⊗ (a′1 + a′′2 + 2e′) intra-term problems, and an

(E ′′ + E ′) ⊗ (a′1 + a′′2 + 2e′) inter-term problem. We use these JT and pJT problems as ex-

amples to demonstrate how to get the vibronic Hamiltonian expansions using the tables

above. For each of these problems, we single out the totally symmetric a1 stretching, which

is JT- and pJT-inactive, from the rest. The diabatic potentials of the four component states

of the two E-type terms depend on the a1 stretching, and these dependences are expressed

as Morse potential functions, i.e.,

V+′′+′′ (s1) = V−′′−′′ (s1) = EE′′,min +DE′′(1− e−αE′′
(
s1−sE

′′
1,min

)
)2, (S3)

and a similar form for the potentials of the 3E ′ state. sE
′′

1,min is the coordinate corresponding

to the minimum of the potential (EE′′,min) along the stretching. DE′′ and αE′′ are the

conventional Morse parameters that determine the depth and width of the potential well.

The calculated and fitted Morse potential energy curve of the 3E ′′ energy along s1 is

shown in Figure S3 as an example. A perfect agreement is seen. Since only the calculated

energies around the minimum are used for the fitting, the fitted DE′′ = 17.28 eV shall be

viewed as a fitting parameter that gives small fitting errors at the this range of s1, instead

of the true dissociation energy. The potential energy curves of the other states along s1 look
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Figure S3: The six symmetry-adapted internal vibrations of CO3. In the e′x stretching and
the e′y bending vibration, the motions along the long arrows are twice of those along the
short arrows.

similar and display similarly perfect agreements. They are hence not shown.
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Figure S4: The calculated and the fitted Morse potential energy curve of the 3E ′′ energy
along s1.

The leftover (a′′2 + 2e′) vibrations are decomposed to bimodal combinations of two (a′′2 + e′)

parts and one (e′ + e′) part. For the E ′′ ⊗ (a′′2 + e′) intra-term problem, there are two inde-

pendent matrix elements in Table S1, H+′′+′′ and H+′′−′′ , whose symmetry eigenvalues are

(1, (1, 0) , 1) and (1, (1,−1) , 1), respectively. The root expansion of H+′′+′′ is taken from the

(e+ a) row in Table S2:

H++ = ρ|3m|+2K
[
ar,3mI1,2K

zI1 cos 3mφ− ai,3mI2,2K
zI2 sin 3mφ

+iar,3mI1,2K
zI1 sin 3mφ+ iar,3mI2,2K

zI2 cos 3mφ
]
. (S4)

In the following, we look up the constraints on this expansion in Table S4, where the (e+ a2)-

(1, (1, 0)) entry reads I1 can only take even integers, while I2 odd only. The last constraint

is in the (e′ + a′′)-(1, 1) entry in Table S6, which reads all Is have to be even. Combining
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the last two constraints, only the terms with even I1 remain in the expansion in Eq. S4:

H+′′+′′ = ar,3m2I1,2K
z2I1ρ|3m|+2Kei3mφ. (S5)

The χ
C′

2
Im = 0 determines that only the real part shall be kept. Therefore,

H+′′+′′ = ar,3m2I1,2K
z2I1ρ|3m|+2K cos 3mφ

= ar,3m2I1,2K
z2I1ρ3m+2K cos 3mφ. (S6)

Please note that the absolute value symbols of 3m are removed in the second row to remove

the duplicate terms. Correspondingly, m now only takes nonnegative integers. Using the

coordinate symbols in Figure S3, z is replaced by s2 and ρ and φ are calculated using s3 and

s4 for the e′ stretching, whereas using s5 and s6 fro the e′ bending. These substitutions of

coordinates shall be kept in mind and will not be repeated below.

The root expansion of H+′′−′′ is obtained by taking the complex conjugate of the (e+ a)

row’s entry in Table S3:

H+− = ρ|3n−1|+2K
[
br,3n−1I1,2K

zI1 cos (3n− 1)φ− bi,3n−1I2,2K
zI2 sin (3n− 1)φ

−ibr,3n−1I1,2K
zI1 sin (3n− 1)φ− ibi,3n−1I2,2K

zI2 cos (3n− 1)φ
]
. (S7)

Then we apply the constraint of “I1 even, I2 odd” in the (e+ a2)-
(
ei

2π
3 , (1,−1)

)
entry in

Table S5 and the “I even” constraint in the (e′ + a′′)−
(
ei

2π
3 , 1
)

entry in Table S7. Together,

the constraints mean only the terms with even I1 shall remain:

H+′′−′′ = br,3n−12I1,2K
z2I1ρ|3n−1|+2Ke−i(3n−1)φ. (S8)

H+′+′ and H+′−′ share the same expansion formulas as H+′′+′′ and H+′′−′′ , respectively, but

with different sets of expansion coefficients. This is because the product of the σh-parities
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are both even in the two intra-term couplings.

Back-transforming the complex E components to the real components (i.e., the inverse

of the transformation in Eq. S1), we have the following real-valued expansions for the Hamil-

tonian matrix elements:

HX′′X′′ +HY ′′Y ′′

2
= H+′′+′′ = ar,3m2I1,2K

z2I1ρ3m+2K cos 3mφ;

HX′′X′′ −HY ′′Y ′′

2
= Re (H+′′−′′) = br,3n−12I1,2K

z2I1ρ|3n−1|+2K cos (3n− 1)φ;

HX′′Y ′′ = −Im (H+′′−′′) = br,3n−12I1,2K
z2I1ρ|3n−1|+2K sin (3n− 1)φ. (S9)

Please note that the br coefficients are shared by two expansions in this real representation

of the 3E ′′ state. Again, the same expansion formulas apply for the real 3E ′ components,

but with different sets of coefficients. This sharing of expansion formulas between the E ′′

and E ′ intra-term problems will not be repeated below.

The root formulas for the E ′′ ⊗ (e′ + e′) are given in the (e+ e) rows in Tables S2 and

S3 (recalling taking the complex conjugate for the expansion in Table S3):

H++ = ρ|m|+2K1
α ρ

|3n−m|+2K2

β

[
ar,m,3n2K1,2K2

cos (mφα + (3n−m)φβ)− ai,m,3n2K1,2K2
sin (mφα + (3n−m)φβ)

+iar,m,3n2K1,2K2
sin (mφα + (3n−m)φβ) + iai,m,3n2K1,2K2

cos (mφα + (3n−m)φβ)
]

; (S10)

H+− = ρ|m|+2K1
α ρ

|3n−1−m|+2K2

β

[
br,m,3n−12K1,2K2

cos (mφα + (3n− 1−m)φβ)

−bi,m,3n−12K1,2K2
sin (mφα + (3n− 1−m)φβ)− ibr,m,3n−12K1,2K2

sin (mφα + (3n− 1−m)φβ) .

−ibi,m,3n−12K1,2K2
cos (mφα + (3n− 1−m)φβ)

]
. (S11)

The (e+ e)-(1, (1, 0)) entry in Table S4 is “cos nz” and the (e′ + e′)-(1, 1) entry in Table S6

is “nr”. So, only the cosine, real-valued terms remain in the H++ expansion above:

H+′′+′′ = ar,m,3n2K1,2K2
ρ|m|+2K1
α ρ

|3n−m|+2K2

β cos (mφα + (3n−m)φβ) . (S12)
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The (e+ e)-
(
ei

2π
3 , (1,−1)

)
entry in Table S5 is “br nz” and the (e′ + e′)-

(
ei

2π
3 , 1
)

entry in

Table S7 is “nr”. Only the terms with br remain in the H+− root expansion above:

H+′′−′′ = br,m,3n−12K1,2K2
ρ|m|+2K1
α ρ

|3n−1−m|+2K2

β e−i(mφα+(3n−1−m)φβ). (S13)

Similar to the results in Eq. S9, the transformation to the real E ′′ components gives

HX′′X′′ +HY ′′Y ′′

2
= H+′′+′′ = ar,m,3n2K1,2K2

ρ|m|+2K1
α ρ

|3n−m|+2K2

β cos (mφα + (3n−m)φβ) ;

HX′′X′′ −HY ′′Y ′′

2
= Re (H+′′−′′)

= br,m,3n−12K1,2K2
ρ|m|+2K1
α ρ

|3n−1−m|+2K2

β cos (mφα + (3n− 1−m)φβ);

HX′′Y ′′ = −Im (H+′′−′′)

= br,m,3n−12K1,2K2
ρ|m|+2K1
α ρ

|3n−1−m|+2K2

β sin (mφα + (3n− 1−m)φβ). (S14)

Now the (E ′′ + E ′)⊗(e′ + a′′2) expansions. In Table S1, there are two independent matrix

elements for this inter-term coupling, H+′′+′ and H+′′−′ , with the symmetry eigenvalues

(1, (1,−1) ,−1) and
(
e−i

2π
3 , (1,−1) ,−1

)
. The (e+ a) root formulas in Eqs. S4 and S7 still

apply to the two matrix elements, given the same χC3s. Applying the constraints of “I1 even,

I2 odd” (the (e+ a2)-(1, (1,−1)) entry in Table S4) and “I odd” (the (e′ + a′′)-(1,−1) entry

in Table S6), only the odd I2 terms remain in Eq. S4:

H+′′+′ = iai,3m2I2+1,2Kz
2I2+1ρ|3m|+2Kei3mφ

= as,3m2I2+1,2Kz
2I2+1ρ3m+2K sin 3mφ+ iac,3m2I2+1,2Kz

2I2+1ρ3m+2K cos 3mφ. (S15)

In the second row, as and ac are real coefficients for the sine and cosine terms. The absolute

value symbols of 3m has been dropped to remove duplicate terms in the final expansion,

and m now only takes nonnegative integers. Applying the constraints of “I1 even, I2 odd”

(the (e+ a2)-
(
ei

2π
3 , (1,−1)

)
entry in Table S5) and “I odd” (the (e′ + a′′)-

(
ei

2π
3 ,−1

)
entry
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in Table S7), only the odd I2 terms remain in Eq. S7:

H+′′−′ = −ibi,3n−12I2+1,2Kz
2I2+1ρ|3n−1|+2Ke−i(3n−1)φ. (S16)

Back-transforming to the real 3E ′′ and real 3E ′ components, we have

HX′′X′ +HY ′′Y ′

2
= Re (H+′′+′) = as,3m2I2+1,2Kz

2I2+1ρ3m+2K sin 3mφ

HX′′X′ −HY ′′Y ′

2
= Re (H+′′−′) = −bi,3n−12I2+1,2Kz

2I2+1ρ|3n−1|+2K sin (3n− 1)φ;

HX′′Y ′ +HY ′′X′

2
= −Im (H+′′−′) = bi,3n−12I2+1 z

2I2+1ρ|3n−1|+2K cos (3n− 1)φ;

HX′′Y ′ −HY ′′X′

2
= Im (H+′′+′) = ac,3m2I2+1,2Kz

2I2+1ρ3m+2K cos 3mφ. (S17)

Please note that in actual calculations, our |X ′′〉 (|Y ′′〉) is symmetric (antisymmetric) with

respect to σ̂v, instead of Ĉ ′2. This is because we did the CO3 calculations before standardizing

the formalisms. With the non-standard |X ′′〉 and |Y ′′〉,

HX′′X′ +HY ′′Y ′

2
= ac,3m2I2+1,2Kz

2I2+1ρ3m+2K cos 3mφ;

HX′′X′ −HY ′′Y ′

2
= −bi,3n−12I2+1 z

2I2+1ρ|3n−1|+2K cos (3n− 1)φ;

HX′′Y ′ +HY ′′X′

2
= −bi,3n−12I2+1,2Kz

2I2+1ρ|3n−1|+2K sin (3n− 1)φ;

HX′′Y ′ −HY ′′X′

2
= −as,3m2I2+1,2Kz

2I2+1ρ3m+2K sin 3mφ. (S18)

These four are the expansion formulas that we use for fitting the model and simulating the

NIPE spectrum.

There is no (E ′′ + E ′) ⊗ (e′ + e′) coupling because of the odd parities of the matrix

elements and the even parities of the vibrational coordinates. Following the same path in

finding the expansion formulas in the Tables, we end up with “na”.

Eqs. S9, S14, and S18 give all expansion formulas we need in simulating the CO−3 NIPE

spectrum in this work. They are complete (not missing any terms), concise (redundancy-
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free), and convenient to obtain. It takes only a few minutes to get them by using those

tables. Certainly, it will be as convenient to obtain expansion formulas for any bimodal

JT and pJT Hamiltonians in trigonal symmetry. There are 12 bimodal coupling problems

(including intra- and inter-term) in C3 symmetry, 36 in C3v, 36 in D3, 110 in C3h, 357 in

D3h, and 357 in D3d. The seven tables hence cover 908 bimodal problems in total.

In this study, we further convert the formulas in Eqs. S9, S14, and S18 from polar to

cartesian coordinates and fit them against numerically calculated matrix elements, which are

obtained by running ab initio quantum chemistry calculations and performing diabatization

on the respective grids of the cartesian coordinates that are relevant for the respective sub-

problems. The highest dimension in running calculations and fitting is 4 for the 3E ′′⊗(e′ + e′)

and the 3E ′⊗ (e′ + e′) subproblem. The formulas up to the maximum of 6-th order are used

to fit the numerical matrix elements. The order is reduced when overfitting occurs and the

resultant surface is unphysical, i.e., too wavy or having wrong signs in large distortion limits.

Technical details of the multi-dimensional fittings are given in Section S3 below.

It is actually more convenient to remain using the expansions in polar coordinates in

fitting. One may first carry out a Fourier analysis of the numerical matrix elements. The

numerical coefficients of the relevant cosine and/or sine components will then be obtained

on a mesh of ρ and/or z coordinates. The coefficients are then fitted against the appropriate

polynomials of the ρ and z (or ρα and ρβ).
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Section S3 Multi-dimensional fittings

Here, we introduce the fitting procedure to obtain the expansion coefficients forHX′′X′′ (s2, s5, s6),

HY ′′Y ′′ (s2, s5, s6), and HX′′Y ′′ (s2, s5, s6). Similar procedures are used for these matrix ele-

ments expanded in other coordinates, and for the other matrix elements. We first perform

electronic structure calculations in a 3-D grid of the vibrational coordinates, and extract

numerical values of the matrix elements using diabatization. In scanning through the grid,

the polar coordinates ρ and φ are used, and they are related to s5 and s6 as s5 = ρ cosφ,

s6 = ρ sinφ. s5 and s6 are e′ bending coordinates and hence have angular unit, and so does

ρ. Step sizes of 10◦ and 15◦ are chosen for ρ and φ, respectively. One advantage of using

polar coordinates is that we only need to consider the φ ∈ [0◦, 60◦] domain, which gives the

symmetrically unique distortion in the s5-s6 space. Similarly, only the positive s2 needs to

be scanned, and we select a step size of 5◦. The upper limits of ρ and s2 are 70◦ and 20◦,

respectively. Adiabatic energies of the 4 triplet component states calculated at the upper

bounds are high enough. Further distortions are unnecessary.

The calculated diagonal matrix elements are then recombined to give numerical values

of
HX′′X′′−HY ′′Y ′′

2
and

HX′′X′′+HY ′′Y ′′
2

. The Marquardt-Levenberg algorithm2,3 is used to si-

multaneously fit the second and third expansion formulas in Eq. S9, which share the same

set of expansion coefficients, against the
HX′′X′′−HY ′′Y ′′

2
and HX′′Y ′′ numerical values. The

same algorithm is used to fit the first expansion formula in Eq. S9 against the
HX′′X′′+HY ′′Y ′′

2

numerical values. The fitted functions and the calculated numerical values of the matrix

elements are plotted and compared in Figure S5, in which s2 = 5◦ is taken. Good agree-

ments are seen, with all the markers falling on the surfaces, and the small deviations shown

in Figure S6. The average errors of the fittings are 0.025 eV for
HX′′X′′−HY ′′Y ′′

2
and HX′′Y ′′ ,

and 0.020 eV for
HX′′X′′+HY ′′Y ′′

2
. Other multi-dimensional fittings give similar errors.
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Section S4 The G matrix in constructing the T̂N oper-

ator

Using the CO bond length of r = 1.272 Å, the 2π
3

OCO bond angles, and the planarity of

the D3h reference structure, the nonzero G matrix elements are evaluated to be

G11 =
1

mO

=
1

15.9949× 1823
= 3.430× 10−5a.u.

G22 =
1

3µr2
+

2

3mCr2
= 9.802× 10−6a.u.

G33 = G44 =
1

µ
+

1

2mC

= 1.029× 10−4a.u.

G55 = G66 =
3

µr2
+

3

2mCr2
= 5.3408× 10−5a.u.

G35 = G46 =
3
√

3

2mCr
= 4.941× 10−5a.u. (S19)

a.u. stands for atomic unit. µ is the reduced mass of the 16O and 12C nuclei.
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Section S5 Technical details of the MCTDH simula-

tions

Table S8: Technical details of the MCTDH simulations: types of DVR, ranges of coordinates
in atomic units, numbers of grid points (N), and numbers of single particle functions (n).

Modes DVR rangea N nb

s1 HOc [−0.3 to 0.3] 21 5
s2 HO [−0.5 to 0.5] 21 7
s3 HO [−0.5 to 0.5] 21 7
s4 HO [−0.5 to 0.5] 21 7
s5 HO [−1.0 to 1.0] 21 7
s6 HO [−1.0 to 1.0] 21 7

a The propagated vibronic wave functions have zero amplitudes at the boundaries of these ranges. b A
multi-set basis is used, with a common number of single particle functions in all electronic states for each
mode. c HO stands for harmonic oscillator type of DVR.
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Figure S7: Convergences of simulated NIPE spectrum with respect to the numbers of grid
points and SPFs.

The spectra in Figure S7 are obtained using µE′ = 1.6µE′′ . The three spectra obtained

using the numbers of grid points and single particle functions (SPFs) as in Table S8 and

with two more grid points and one more SPF are indiscernible. Therefore, the simulation

using the specifications in Table S8 has converged.
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Section S6 The coupling between the 3E ′′ and 3E ′ states

along the s2 coordinate.
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Figure S8: The coupling between the 3E ′′ and 3E ′ states along the s2 coordinate.
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Section S7 Comparison of the simulated A band against

experiment in the photon energy range of

4.8 to 5.0 eV.
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Figure S9: Comparison of the simulated A against experiment in the photon energy range
of 4.8 to 4.0 eV. The simulated spectrum is obtained with µE′ = 1.6µE′′ .
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Section S8 Comparison of the simulated A band with

and without the a′1 stretching.
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Figure S10: Comparison of the simulated A band with (6 modes) and without (5 modes)
the a′1 stretching mode.
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