Supporting Information for

Electrochemical reduction of CO₂ using palladium modified boron-doped diamond electrodes: enhancing the production of CO

Prastika K. Jiwanti^a, Yasuaki Einaga^{*,a,b}

^aDepartment of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522,

Japan

^bACCEL, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda 102-8666, Japan

*Corresponding author Email: einaga@chem.keio.ac.jp

Figure S1. CVs of PdBDD30 (A), PdBDD100 (B), PdBDD300 (C), and PdBDD1000 (D) after N₂ and CO₂ bubbling, performed in 0.1 M NaCl with a scan rate of 100 mV/s, and potentials ranging from -1.8 V to 1.2 V.

Figure S2. Chronoamperometry for the electrochemical reduction of CO_2 (A) and the current density at a potential of -1.5 V (B) using PdBDD electrodes with different Pd deposition time.

Electrode	Potential/V	Faradaic Efficiency/%		
		НСООН	СО	H ₂
Bare BDD	-1.6	5.76	9.95	84.92
Pd metal*	-1.6	0.70	9.34	8.53

Table S1. Faradaic efficiencies for the products produced using bare BDD and Pd

 metal electrodes

*The total faradaic efficiency of the products with the Pd metal electrode is far from 100%. This might be due to dissolution of H_2 into the electrode [1].

Figure S3. SEM images of PdBDD electrodes after the electrochemical reduction of CO_2 at a potential of -1.5 V for 1 hour.

Figure S4. Pd particle size distribution after electrochemical deposition at a potential of -0.15 V using electrodes with different deposition times

Figure S5. Pd particle size distribution on the different PdBDD electrodes, after electrochemical reduction of CO_2 at a potential of -1.5 V for 1 hour.

Figure S6. Stirring speed dependence of the faradaic efficiencies of the products and the current density during the electrochemical reduction of CO_2 carried out using PdBDD300 at a potential of -1.6 V for 1 hour.

Reference

[1] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, *Electrochem. Commun.* **1994**, *39*, 1833–1839.