Supporting information for:

Ab initio computation for solid-state ${}^{31}P$ NMR of inorganic phosphates: Revisiting X-ray structures[†]

E-mail:

Kartik Pilar,^a Zeyu Deng,^b Molleigh B. Preefer,^{a,c} Joya A. Cooley,^a Raphaële Clément,^{a,d} Ram Seshadri,^{a,c,d} and Anthony K. Cheetham^{a,e*} ^aMaterials Research Laboratory University of California, Santa Barbara, California 93106 United States. ^bDepartment of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd, CB3 OFS Cambridge, UK. ^cDepartment of Chemistry and Biochemistry University of California, Santa Barbara, California 93106 United States. ^dMaterials Department University of California, Santa Barbara, California 93106 United States. ^eDepartment of Materials Science and Engineering National University of Singapore, 117575 Singapore. *E-mail: akc30@cam.ac.uk Gamma centered k-point grids were created using automated k-mesh generation, built into the VASP code. The density of k-points was determined by the formula:

$$N_x = max(1, l \times |\vec{b_x}| + 0.5)$$
(1)

where N_x is the number of k-points along the reciprocal lattice vector, $\vec{b_x}$, corresponding to lattice vector \vec{x} . l is the input length parameter which dictates k-spacing, which was found to converge at 15. Larger values for l correspond to greater k-point densities.

Figure S1: *k*-spacing was tested for convergence with $AIPO_4$ and $Mg_3(PO_4)_2$.

Compound	a/Å	b/Å	c/Å	$\alpha /^{\circ}$	β/°	$\gamma/^{\circ}$
Li ₃ PO ₄	4.924	6.115	10.473	90	90	90
	4.974	6.141	10.538	90	90	90
$Cd_2P_2O_7$	6.623	6.672	6.858	64.62	84.20	82.38
	6.659	6.619	6.807	64.950	84.087	82.011
$Ca(H_2PO_4)_2$	5.550	7.558	8.223	68.154	70.522	86.320
	5.488	8.037	8.410	70.882	66.212	78.39
α –Zn ₃ (PO ₄) ₂	8.14	5.63	15.04	90	105.13	90
	8.215	5.618	15.120	90	105.046	90
$Na_4P_2O_7$	9.367	5.390	13.480	90	90	90
	9.324	5.393	13.499	90	90	90
α –CaZn ₂ (PO ₄) ₂	4.96	8.42	8.94	113.75	102.45	94.20
	4.967	8.412	8.937	113.688	102.340	94.254
$KZn_4(PO_4)_3$	8.166	9.675	13.810	90	90	90
	8.168	9.627	13.854	90	90	90
β –Zn ₃ (PO ₄) ₂	8.270	8.686	9.170	90	90	12.771
	8.270	8.716	9.152	90	90	113.132
$Ca(H_2PO_4)_2 \bullet (H_2O)$	5.626	6.256	11.889	92.928	96.656	114.229
	5.585	6.208	11.785	92.942	95.760	114.357
$CaHPO_4 \bullet 2(H_2O)$	5.812	15.180	6.239	90	116.430	90
	5.796	14.861	6.084	90	115.780	90
$MgZn_2(PO_4)_2$	7.569	8.355	5.059	90	94.95	90
-	7.585	8.314	5.061	90	95.142	90
β –Ca $_2$ P $_2$ O $_7$	6.686	6.686	24.147	90	90	90
	6.664	6.664	24.104	90	90	90
α –Ca ₂ P ₂ O ₇	5.315	8.542	12.660	90	90.3	90
	5.323	8.483	12.641	90	89.845	90
$Mg_3(PO_4)_2$	8.512	8.982	9.320	116.34	91.50	114.49
	8.504	8.982	9.325	115.944	91.356	114.378
α –Zn ₂ P ₂ O ₇	8.259	9.099	10.618	99.350	112.888	90
	8.272	9.129	10.663	99.027	112.822	112.822
α –Mg ₂ P ₂ O ₇	6.981	8.295	9.072	90	113.999	90
	6.954	8.300	9.067	90	113.856	90
$NaAlP_2O_7$	7.203	7.710	9.326	90	111.743	90
	7.227	7.694	9.335	90	111.761	90
$KAlP_2O_7$	7.308	8.025	9.662	90	90	106.69
	7.339	8.081	9.684	90	90	107.096
α –Sr ₂ P ₂ O ₇	5.404	8.910	13.105	90	90	90
	5.372	8.899	13.151	90	90	90
$NaZr_2(PO_4)_2$	8.804	8.804	9.132	61.179	61.179	60
	8.855	8.855	9.132	60.997	60.998	60.000
$Mg_2P_4O_{12}$	7.191	7.191	9.675	98.959	109.792	109.652
-	7.195	7.195	9.722	99.062	109.355	109.843
$AlPO_4$	4.946	4.946	10.953	90	90	120
	4.974	4.974	11.016	90	90	120

Table S1: Unit cell parameters for 22 inorganic phosphate compounds studied in this work as reported in ICSD and fully relaxed structures below in italics

Figure S2: GIPAW calculated isotropic chemical shifts using fully relaxed structures and the PBEsol functional compared to experimentally reported values. $R^2 = 0.987$. Here, the left vertical axis is scaled by a factor of 0.933 and shifted by 299.15 ppm from the VASP calculated shifts.

Due to the large deviations of lattice parameters during the full relaxation of $Ca(H_2PO_4)_2$, another DFT relaxation was done for this structure including dispersion interactions using the DFT-D2 method.¹ The PBE functional² was used as the PBEsol functional is incompatible with the DFT-D2 method within the VASP code. Even with dispersion forces accounted for, lattice cell parameters still largely deviated from the previously reported structure, as shown in Table S2.

Table S2: Unit cell parameters for $Ca(H_2PO_4)_2$ as reported in ICSD and fully relaxed while accounting for dispersion interactions below in italics

Compound	a/Å	b∕Å	c∕Å	$\alpha/^{\circ}$	β/°	$\gamma/^{\circ}$
$Ca(H_2PO_4)_2$	5.550	7.558	8.223	68.154	70.522	86.320
	5.490	7.918	8.312	70.613	67.926	79.041

Figure S3: GIPAW calculated isotropic chemical shifts using reported structures from ICSD and the PBE functional compared to experimentally reported values. $R^2 = 0.924$, or $R^2 = 0.963$ if Li₃PO₄ is disregarded. Here, the left vertical axis is scaled by a factor of 1.048 and shifted by 305.80 ppm from the VASP calculated shifts.

Figure S4: GIPAW calculated isotropic chemical shifts using structures relaxed with rigid cell parameters and the PBE functional compared to experimentally reported values. $R^2 = 0.964$. Here, the left vertical axis is scaled by a factor of 0.968 and shifted by 297.99 ppm from the VASP calculated shifts.

Figure S5: GIPAW calculated isotropic chemical shifts using fully relaxed structures and the PBE functional compared to experimentally reported values. $R^2 = 0.986$. Here, the left vertical axis is scaled by a factor of 0.936 and shifted by 297.05 ppm from the VASP calculated shifts.

Figure S6: GIPAW calculated CSA span using structures relaxed with rigid lattice parameters and the PBE functional compared to experimentally reported values. $R^2 = 0.987$.

Figure S7: GIPAW calculated CSA skew using structures relaxed with rigid lattice parameters and the PBE functional compared to experimentally reported values. $R^2 = 0.831$.

1		0.4	
Compound	δ_{iso}/ppm	Ω/ppm	κ
$L_{13}PO_4$	-276.6878	6.3630	-0.1396
	-276.6414	6.2621	-0.1392
$Cd_2P_2O_7$	-296.7197	161.3842	-0.5365
	-295.8874	161.3797	-0.5531
	-299.8709	117.1326	-0.6952
	-298.8751	116.1794	-0.6860
$Ca(H_2PO_4)_2$	-289.9187	167.5137	0.3432
	-289.6518	177.1814	0.4328
	-295.8704	140.7196	0.1813
	-294.9645	143.7031	0.1395
α –Zn ₃ (PO ₄) ₂	-288.1672	78.4081	0.1582
	-286.7135	75.5592	0.1139
$Na_4P_2O_7$	-287.7554	143.1338	-0.8727
	-286.5922	142.5992	-0.8725
	-286.7524	153.2788	-0.8780
	-285.6128	152.2954	-0.8757
α –CaZn ₂ (PO ₄) ₂	-290.4665	85.9927	0.2883
	-289.7158	84.5761	0.2712
	-279.5392	44.6057	-0.4834
	-278.5499	43.9620	-0.4707
$KZn_4(PO_4)_3$	-288.8791	66.8469	-0.6744
1 10	-286.7518	64.8321	-0.6802
	-278.4310	73.0178	0.3885
	-277.7230	74.5302	0.3547
β -Zn ₂ (PO ₄) ₂	-289.1686	23.4822	-0.0323
/~	-289.7030	17.2178	-0.2111
	-281.8146	40.4123	-0.4229
	-280 8441	37.2953	-0.3990
Ca(H₂PO₄)₂●(H₂O)	-295.1250	124.8185	-0.1526
	-294 3918	131 1878	-0 1121
	-289 7484	103 1896	0 2026
	-288 2935	103 1762	0.0475
$CaHPO_{4} \bullet 2(H_{2}O)$	-285 9999	116 8827	0.0778
	-286 4263	123 1148	-0.0670
$Ma7n_{2}(PO_{4})_{2}$	_285 7051	47 6715	_0 2044
$\operatorname{WgZH}_2(1 \operatorname{O}_4)_2$	285.7031	47.6713	0 1 2 0 5
β Cap $\mathbf{P}_{\mathbf{r}}$	205 8860	174 8702	-0.1395
p -Ca $_2$ F $_2$ O $_7$	-303.8809	179 4847	-0.1083
	-304.3203	1/2.404/	-0.1/42
	-300.9602	141.3152	-0.5008
	-300.1002	140./330 140.4055	-0.3300
	-302.5808	149.4955	-0.6/24
	-301.5242	148.3881	-0.6/00
	-303.26/8	145.1390	-0.4339
	-302.2609	144.7101	-0.4379

Table S3: Computed ³¹P CSA tensor parameters for all 22 compounds computed for structures relaxed with rigid cell parameters using PBEsol and PBE written below in italics.

Commenced	S /	0 /	
Compound	o _{iso} /ppm	<u>\/ppm</u>	<u> </u>
α –Ca ₂ P ₂ O ₇	-301.8591	125.2659	-0.3203
	-300.7201	123.1066	-0.3024
	-305.1167	123.8306	-0.5170
	-304.0286	123.9809	-0.5428
$Mg_3(PO_4)_2$	-291.0622	27.4465	0.4335
	-290.7743	26.9534	0.3368
α –Zn ₂ P ₂ O ₇	-317.9956	135.5742	-0.3852
	-317.3484	135.0370	-0.4140
	-320.4896	144.9354	-0.3686
	-319.3358	144.2677	-0.3910
	-313.2307	113.1426	-0.7932
	-314.3873	115.2942	-0.7677
α –Mg ₂ P ₂ O ₇	-315.3940	146.4777	-0.6315
	-294.6839	218.8990	-0.2985
	-307.2805	110.9000	-0.9052
	-310.8127	160.9620	-0.2276
$NaAlP_2O_7$	-315.8403	150.6109	-0.3564
	-314.7761	149.1990	-0.3615
	-326.3221	130.6143	-0.5731
	-325.5653	130.1871	-0.5751
$KAlP_2O_7$	-320.1908	112.9544	-0.9751
	-318.4101	112.4001	-0.9479
	-327.3605	133.2534	-0.2466
	-326.1127	132.3035	-0.2410
α –Sr ₂ P ₂ O ₇	-304.1691	121.4014	-0.8373
	-302.9232	119.5529	-0.8764
	-301.9383	109.7637	-0.5855
	-300.4661	106.8719	-0.5980
$NaZr_2(PO_4)_2$	-322.8137	13.9623	-0.9348
	-322.9771	16.2592	-0.7897
$Mg_2P_4O_{12}$	-333.8429	230.9511	0.4928
02 1 12	-332.0204	230.4921	0.4886
	-335.3001	241.2628	0.5337
	-333.9006	240.7955	0.5354
$AlPO_4$	-318.0154	8.5019	0.0751
-	-316.6491	9.0072	0.0174

Table S4: Computed ³¹P CSA tensor parameters for all 22 compounds computed for structures relaxed with rigid cell parameters using PBEsol and PBE written below in italics (continuted)

References

- (1) S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- (2) J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.