Mixtures of LiTFSI and urea: ideal thermodynamic behavior as key to the formation of deep eutectic solvents?

Aniruddha Nandy †,¶ and Jens Smiatek *,‡,¶

†Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India
‡Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
¶Helmholtz–Institute Münster: Ionics in Energy Storage (HIMS – IEK 12),
Forschungszentrum Jülich GmbH, D-48149 Münster, Germany

E-mail: smiatek@icp.uni-stuttgart.de

Radial distribution function for Li^+-Li^+

Figure 1: Radial distribution function $g_{\text{Li}^+-\text{Li}^+}(r)$ for Li⁺ ions in various LiTFSI/urea mixtures as denoted in the legend.

Molecular snapshots: DFT calculations

 $Li^+ \cdot [TFSI^-]_3[Urea]_1$

Figure 2: Molecular snapshot of a $\text{Li}^+ \cdot [\text{TFSI}^-]_3[\text{Urea}]_1$ complex from DFT calculations. Li⁺ ions are colored in pink, sulfur atoms in yellow, oxygen atoms in red, fluorine atoms in brown, carbon atoms in turquoise and all hydrogen atoms are colored in white.

$\mathbf{Li^{+}} \cdot [\mathbf{TFSI^{-}}]_1 [\mathbf{Urea}]_3$

Figure 3: Molecular snapshot of a $\text{Li}^+ \cdot [\text{TFSI}^-]_1[\text{Urea}]_3$ complex from DFT calculations. Li^+ ions are colored in pink, sulfur atoms in yellow, oxygen atoms in red, fluorine atoms in brown, carbon atoms in turquoise and all hydrogen atoms are colored in white.

Dielectric constants

The relative permittivity $\epsilon_{\rm r}$, also called dielectric constant, is calculated straightforwardly by using the dipole moment fluctuation formula¹⁻³

$$\epsilon_{\rm r} = 1 + \frac{4\pi}{3} \frac{\langle \boldsymbol{M}_{\rm tot}^2 \rangle}{\langle \boldsymbol{V} \rangle k_{\rm B} T} \tag{1}$$

with Boltzmann constant k_B , and temperature T, where $\langle M_{tot}^2 \rangle$ denotes the average squared net total molecular dipole moment in a simulation box of average volume $\langle V \rangle$.

Figure 4: Dielectric constant ϵ_r of the LiTFSI/urea mixtures for different urea mole fractions x_{Urea} . The dashed black line shows a linear fit function via regression analysis.

Total interaction energies

Figure 5: Total interaction energies between Li⁺ and urea as well as between Li⁺ and TFSI⁻ ions, respectively. Values for Li⁺-urea are shown as black circles whereas all values for Li⁺-TFSI⁻ are depicted as red squares.

Mean-squared displacement (MSD) of components

With increasing urea concentration, the MSD values increase significantly. The transition from sub-diffusive (~ t^{α} with $\alpha < 1$) to diffusive regimes (~ t) occurs on shorter time scales with increasing urea concentration⁴. With regard to this point, the first coordination shell around Li⁺ ions is located on length scales $r_c = 0.544$ nm. It can be assumed that diffusive behavior is observed on time scales $\tau > r_c^2/6D_{cm}$ and on length scales $\Delta r^2 > \Delta r_c^2$ as marked by the horizontal black line in Fig. 6 (top).

Figure 6: Mean-square displacement of Li⁺ (top), TFSI⁻ ions (middle) and urea molecules (bottom) for various mixing ratios as denoted in the legend.

References

- de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants. *Proc. Royal* Soc. A 1980, 373, 27–56.
- Neumann, M. Dipole moment fluctuation formulas in computer simulations of polar systems. Mol. Phys. 1983, 50, 841–858.
- (3) Caillol, J.; Levesque, D.; Weis, J. Theoretical calculation of ionic solution properties. J. Chem. Phys. 1986, 85, 6645–6657.
- (4) Lesch, V.; Heuer, A.; Holm, C.; Smiatek, J. Solvent effects of 1-ethyl-3methylimidazolium acetate: solvation and dynamic behavior of polar and apolar solutes. *Phys. Chem. Chem. Phys.* 2015, 17, 8480–8490.