

Electronic Supplementary Information

for

**Photochromic reaction in 3H-naphthopyrans studied by vibrational spectroscopy
and quantum chemical calculations**

Sabina Brazevic,^a Stanislaw Nizinski,^a Rafał Szabla,^b Michał F. Rode^{*b} and Gotard Burdzinski^{*a}

^a Quantum Electronics Laboratory, Faculty of Physics,

Adam Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznan, Poland

E-mail: gotardb@amu.edu.pl

^b Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland.

E-mail: mrode@ifpan.edu.pl

OUTLINE

Two types of conical intersections present in the TC-u↔TT-u photoisomerization process.....	3
Table S1. The adiabatic energy calculated at the different theory level	4
Table S2. Theoretical parameters of NP molecule calculated with the CC2/aug-cc-pVDZ method	4
Table S3. The spectral position C=O stretching mode of NP isomers in different solvents	5
Table S4. Comparison of the calculated parameters for the ground state (S_0) geometries optimized at the MP2/cc-pVDZ level of theory	5
Table S5. Comparison of the calculated parameters for the excited state (S_1) geometries optimized at the ADC(2)/cc-pVDZ level of theory.....	5
Table S6. Theoretical predictions for the spectral position of vibrational C=O stretching mode	5
Table S7. Comparison of the geometric parameters for the conical intersection	6
Figure S1. Stationary UV-vis absorption spectrum of NP	7
Figure S2. Calculated vibrational mid-IR spectra for the optimized structures	7
Figure S3. TT-u population decay	8
Figure S4. TT-u absorption spectrum	8
Figure S5. Kinetics for NP upon long UV irradiation period.....	9
Figure S6. Decay associated spectra of NP in PMMA.....	9
Figure S7. TT-u fluorescence spectrum.....	10
Figure S8. ESIPT mechanism.....	10
Important geometries in the Cartesian Coordinates format	11
Calculation of quantum yields.....	14
Figure S9. Numerically calculated CF → TC photoconversion reaction	14
Figure S10. Numerically calculated TC → TT photoconversion reaction	16
References	17

Two types of conical intersections present in the **TC-u**↔**TT-u** photoisomerization process **CI₂(S₁/S₀)** and **CI₃(S₁/S₀)**

As the $S_1 \rightarrow S_0$ emission pathway is minor, practically the whole energy of photoexcitation should be dissipated into heat due to fast nonradiative channels associated with nonadiabatic transition at the multiple CI regions.

The **CI₃(S₁/S₀)** conical intersection responsible for the photoisomerization between the two forms can be readily found when the optimization procedure is started from the Franck-Condon region of the **TT-u** isomer. The $\delta(C_5-C_{14}=C_1-C_2)$ dihedral angle, identified above as the driving coordinate for the **TT-u**↔**TC-u** photoisomerization, amounts to -115.9° and the distance between the C₁₄ and C₁ atoms is equal to 1.48 Å. In addition, this **CI₃** geometry is characterized by the C₂=C₃ bond elongated up to 1.44 Å and a modest rotation of the phenyl substituents around this bond by approximately 20.0°. These nuclear parameters suggest that the photochemical interconversion between the **TC-u** and **TT-u** isomers might resemble the bicyclic pedal photoisomerization mechanism reported for the first time by Warshel.¹⁻³ The bicyclic-pedal mechanism would be here described as the twist about the two double bonds: C₁=C₁₄ and C₂=C₃ in opposing directions so that the two phenyl rings would remain in a similar orientation with respect to the naphthalenone moiety during the photoisomerization process. This mechanism might be in fact favorable in solution phase, where the rotation occurring solely around the C₁=C₁₄ bond would be hindered by significant friction around the phenyl substituents. This friction would be otherwise reduced by the bicyclic-pedal photoisomerization mechanism. It is also worth noting that the **TT-u**↔**TC-u** photoisomerization is available after the photoexcitation of both of the involved isomers and it could occur on a sub-picosecond timescale owing to the peaked topography of the **CI₃(S₁/S₀)** state crossing.

Apart from the conical intersection responsible for the photochemical **TT-u**↔**TC-u** interconversion, we also identified the **CI₂(S₁/S₀)** conical intersection (the geometry of both **CI₂** and **CI₃** are given in Table S7) that is available exclusively from the **TC-u** form. Unlike the **CI₃(S₁/S₀)** state crossing, the **CI₂(S₁/S₀)** conical intersection is characterized by only slight rotation about the C₁=C₁₄ and C₂=C₃ bonds of approximately 20° (see B_F-N dihedral angle in Table S7) in both cases. The C₁=C₁₄ and C₂=C₃ bond lengths are virtually identical for both these conical intersection geometries, i.e. 1.48 Å and 1.44 Å respectively. However, given the very modest displacement of the $\delta(C_5-C_{14}=C_1-C_2)$ dihedral angle the **CI₂(S₁/S₀)** conical intersection does not allow for the population of the **TT-u** form. Therefore, the **CI₂(S₁/S₀)** state crossing enables efficient repopulation of the **TC-u** electronic ground state and is a photostabilizing channel for this isomer. The presence of this photostabilizing conical intersection could also explain the relatively low **TT-u** to **TC-u** ratio in the photoproduct mixture just after switching off UV irradiation.

Table S1. The adiabatic energy of the given form (in eV) relative to the closed global minimum form, **CF**, calculated at the different theory level.

Method/Structure	MP2/cc-pVDZ	MP2/cc-pVTZ	MP2/aug-cc-pVDZ
CF	0.00	0.00	0.00
TC-d	0.84	0.91	0.85
TC-u	0.59	0.66	0.70
TT-u	0.62	0.69	0.72
TT-d	0.64	0.67	0.49
AP	1.02	1.08	1.03

Table S2. Vertical excitation energy (ΔE^{VE} , in eV and λ_{abs} , in nm calculated *vs.* experimental), oscillator strength (f), and dipole moment (μ_e , in Debye) of the lowest singlet states for the equilibrium forms of the **NP** molecule calculated with the **CC2/aug-cc-pVDZ** method at the ground state geometries optimized at the **MP2/cc-pVDZ** theory level.

S₀ form		ΔE^{VE} calc.	λ_{abs} calc.	f calc.	μ_e calc.	ΔE^{VE} expt.	λ_{abs} expt.
CF	S_0	0.0		-	0.9		
	$S_0 \rightarrow S_1(\pi\pi^*)$	3.70	335 nm	0.081	1.0	3.47 eV	361 nm
	$S_0 \rightarrow S_2(\pi\pi^*)$	4.23	293 nm	0.084	1.7		
	$S_0 \rightarrow S_3(\pi\pi^*)$	4.60		0.004	3.3		
	$S_0 \rightarrow S_4(\pi\pi^*)$	4.84		0.007	7.1		
TC-u	S_0	0.59 ^a		-	2.8		
	$S_0 \rightarrow S_1(\pi\pi^*)$	2.71	458 nm	0.031	1.3		
	$S_0 \rightarrow S_2(\pi\pi^*)$	2.97	418 nm	0.714	5.5	2.91	427 nm
	$S_0 \rightarrow S_3(\pi\pi^*)$	3.52	353 nm	0.091	8.4		
	$S_0 \rightarrow S_4(\pi\pi^*)$	4.15		0.143	5.5		
TC-d	S_0	0.84 ^a		-	1.5		
	$S_0 \rightarrow S_1(\pi\pi^*)$	2.47	502 nm	0.115	0.6		
	$S_0 \rightarrow S_2(\pi\pi^*)$	3.14	395 nm	0.366	3.6		
	$S_0 \rightarrow S_3(\pi\pi^*)$	3.49	356 nm	0.031	7.8		
	$S_0 \rightarrow S_4(\pi\pi^*)$	4.01		0.028	3.3		
TT-u	S_0	0.62 ^a		-	3.0		
	$S_0 \rightarrow S_1(\pi\pi^*)$	2.81	441 nm	0.110	0.8		
	$S_0 \rightarrow S_2(\pi\pi^*)$	3.08	403 nm	0.600	6.0	3.03	409 nm
	$S_0 \rightarrow S_3(\pi\pi^*)$	3.63	342 nm	0.052	7.5		
	$S_0 \rightarrow S_4(\pi\pi^*)$	4.20	295 nm	0.149	4.7		
	$S_0 \rightarrow S_5(\pi\pi^*)$	4.35	285 nm	0.098			
TT-d	S_0	0.64 ^a		-	4.2		
	$S_0 \rightarrow S_1(\pi\pi^*)$	2.82	440 nm	0.051	2.0		
	$S_0 \rightarrow S_2(\pi\pi^*)$	3.03	409 nm	0.172	7.3		
	$S_0 \rightarrow S_3(\pi\pi^*)$	3.53	351 nm	0.028	7.1		
	$S_0 \rightarrow S_4(\pi\pi^*)$	3.82	325 nm	0.034	8.5		
	$S_0 \rightarrow S_5(\pi\pi^*)$	4.15	299 nm	0.030	4.5		
AP	S_0	1.02 ^a			1.4		
	$S_0 \rightarrow S_1(\pi\pi^*)$	3.86	321 nm	0.148	2.0		below 400 nm
	$S_0 \rightarrow S_2(\pi\pi^*)$	4.14	300 nm	0.039	11.0		
	$S_0 \rightarrow S_3(\pi\pi^*)$	4.42	281 nm	0.193	1.0		
	$S_0 \rightarrow S_4(\pi\pi)$	4.64	267 nm	0.005	10.0		

^a adiabatic energy of the given (E_a , in eV) form relative to the closed form, **CF**, calculated at the MP2/cc-pVDZ theory level.

* mean error of calculated ΔE^{VE} is below 0.3 eV ⁴⁻⁶

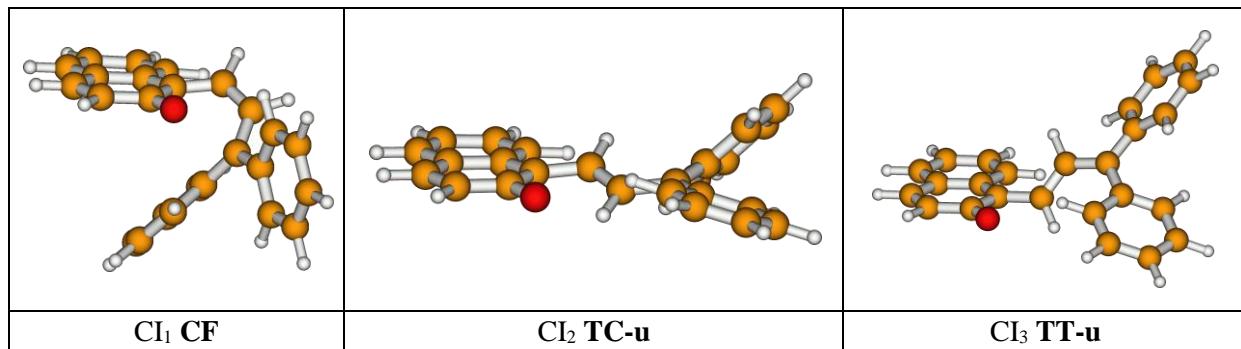
Table S3. The spectral position (cm^{-1}) of vibrational C=O stretching mode of **TC-u** and **TT-u** isomers of **NP** in different solvents.

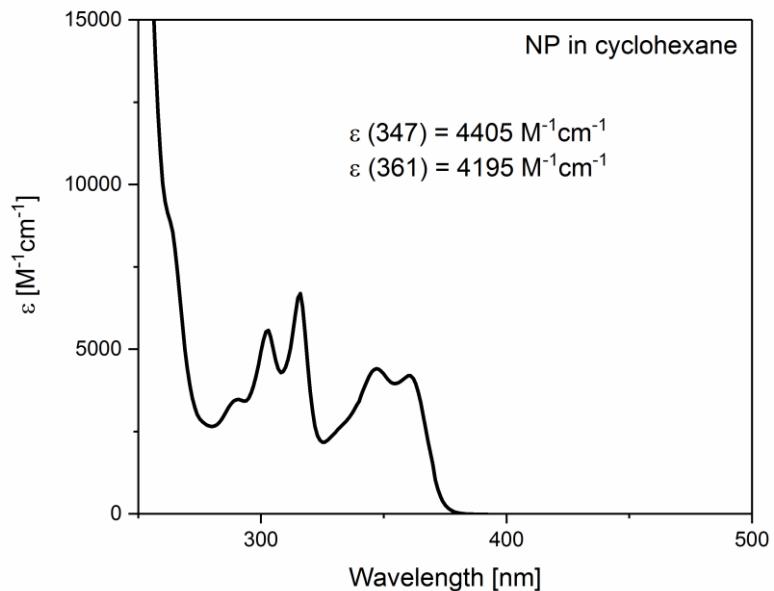
Solvent	ν, cm^{-1}	
	TC-u	TT-u
Cyclohexane	1644	1655
Acetonitrile-d ₃	1638	1647
Methanol-OD	1630	1641

Table S4. Comparison of the geometric parameters (bond lengths, in Å), adiabatic energies (E_a , in eV) for the ground state (S_0) geometries optimized at the **MP2/cc-pVDZ** level of theory. B_F-N denotes phenyl- naphthalenone dihedral angle, BB corresponds to phenyl-phenyl dihedral angle.

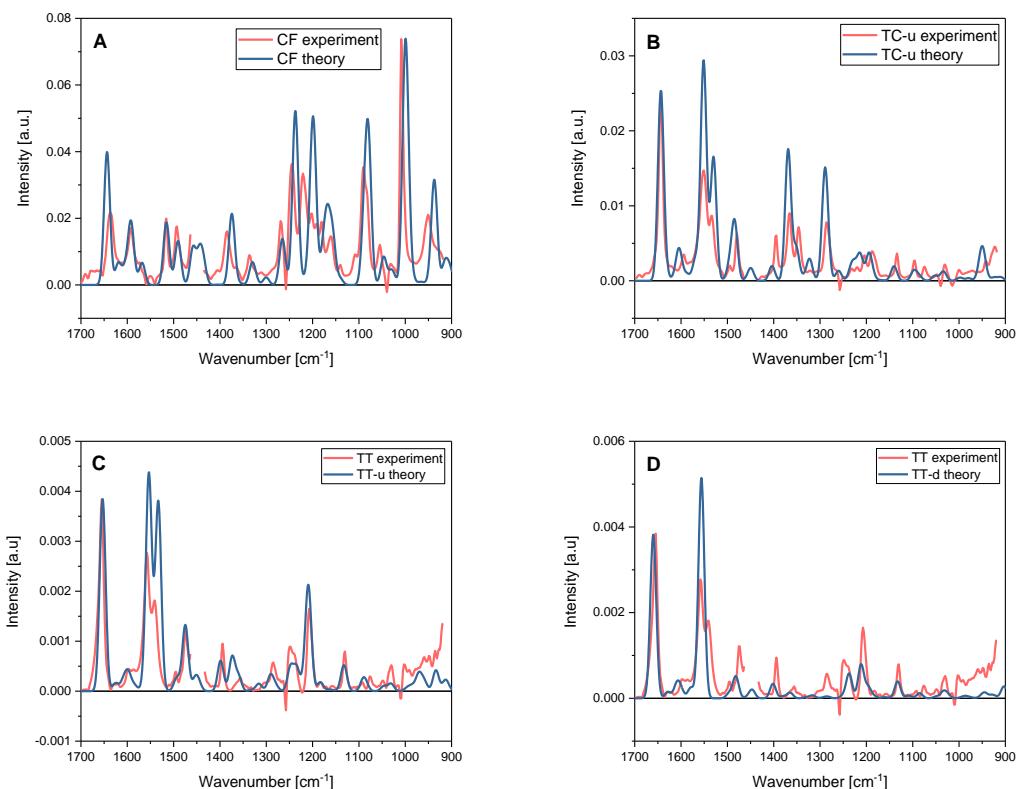
	$R_{C_3-O_4}$ [Å]	$\delta_{C_5-C_{14}=C_1-C_2}$ [°]	$\sigma_{C_{14}-C_1-C_2-C_3}$ [°]	$R_2_{C_5-O_4}$ [Å]	$R_D_{C_1-C_{14}}$ [Å]	$R_S_{C_1-C_2}$ [Å]	$R_E_{C_2-C_3}$ [Å]	B _F -N [°]	BB [°]	E_a [eV]
CF	1.459	20.1	3.8	1.371	1.461	1.360	1.514	78.4	82.2	0.00
TS₁	2.100	22.8	27.7	1.269	1.415	1.405	1.407	84.0	67.0	1.08
TC-d	2.779	17.7	45.0	1.239	1.388	1.446	1.380	69.3	70.5	0.84
TS₂	3.098	2.6	90.0	1.235	1.371	1.479	1.363	82.8	82.3	1.04
TC-u	4.165	2.6	173.5	1.239	1.386	1.437	1.362	63.7	70.3	0.59
TS₃₋₁	4.740	-90.0	-157.0	1.236	1.418	1.429	1.392	80.2	66.3	1.874
TS₃₋₂	4.739	90.0	156.9	1.236	1.418	1.429	1.392	80.2	66.3	1.874
TT-u₁	5.064	165.1	172.1	1.234	1.382	1.440	1.382	50.6	68.5	0.62
TT-u₂	5.046	-166.2	179.7	1.234	1.383	1.439	1.382	50.1	73.8	0.69
TT-d	5.219	162.0	-43.3	1.233	1.375	1.461	1.377	12.8	72.7	0.64
AP	3.413	34.3	30.3	1.360	1.478	1.334	1.339	73.6	62.6	1.01
TS₄	3.615	9.2	161.5	1.284	1.413	1.405	1.384	48.3	59.9	1.677

Table S5. Comparison of the geometric parameters (bond lengths, in Å, dihedral angles), adiabatic energies (E_a , in eV) for the excited state (S_1) geometries optimized at the **ADC(2)/cc-pVDZ** level of theory. Conical intersection **CI(S₁/S₀)** geometry designated as **CI₁^{MPE}** - the intersection of the excited-state MPE profile with the ground electronic state, S_0 at the **ADC(2)(S₁)/MP2(S₀)/cc-pVDZ** theory level.

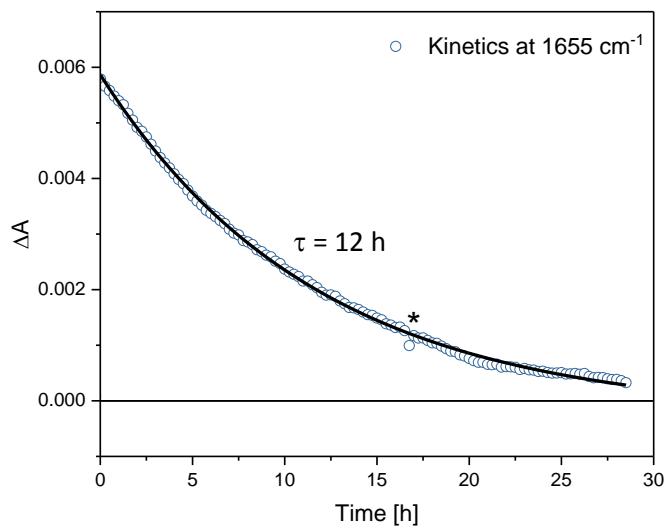

S ₁ -state form or CI	$R_{C_3-O_4}$ [Å]	$\delta_{C_5-C_{14}=C_1-C_2}$ [°]	$\sigma_{C_{14}-C_1-C_2-C_3}$ [°]	$\tau_{C_6-C_5-C_{14}-C_1}$ [°]	$R_2_{C_5-O_4}$ [Å]	$R_D_{C_1-C_{14}}$ [Å]	$R_S_{C_1-C_2}$ [Å]	$R_E_{C_2-C_3}$ [Å]	B _F -N [°]	BB [°]	E_a [eV]
TC-d	2.600	45.1	7.6	176.9	1.276	1.479	1.362	1.471	27.3	59.5	1.74
CI₁	2.200	28.8	17.4	178.4	1.282	1.447	1.384	1.450	42.4	59.5	1.91
TT-u	4.433	-91.3	170.0	180.0	1.266	1.474	1.366	1.445	58.0	59.7	1.85
TC-u	3.921	22.5	-174.8	174.2	1.399	1.478	1.371	1.440	45.0	58.7	2.14

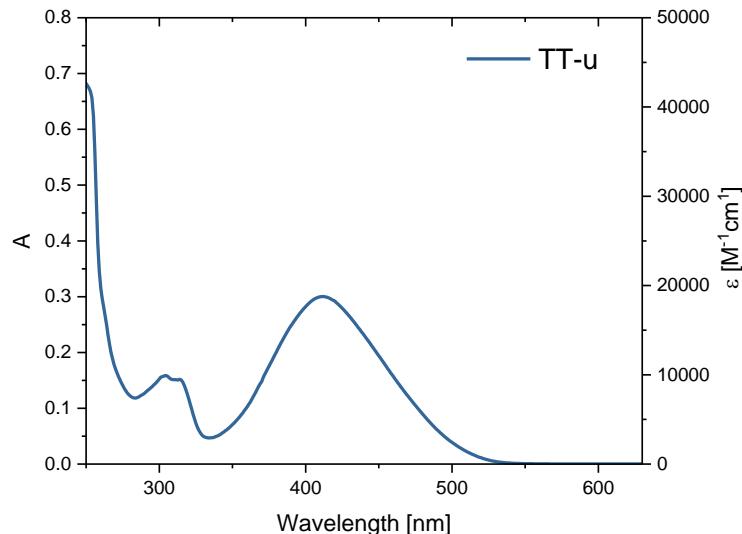

Table S6. Theoretical predictions for the spectral position (cm^{-1}) of vibrational C=O stretching mode of **TC-u**, **TC-d**, **TT-u** and **TT-d** isomers (at **B3LYP/6-311++G(3df,3pd)** level of theory with polarizable continuum model for cyclohexane). Scaling factor 0.98385 is an average of factors for **TC-u** and **TT-u**, (see Fig. S2).

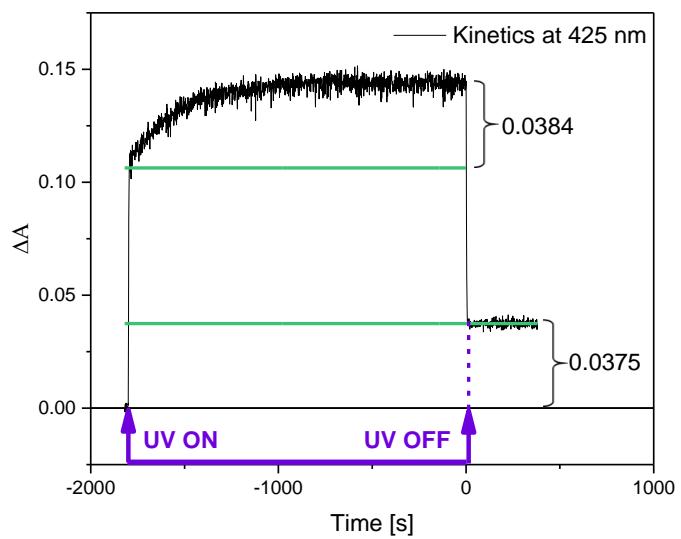
form	ν, cm^{-1}
TC-u	1641.36
TC-d	1653.83
TT-u	1655.47
TT-d	1662.26

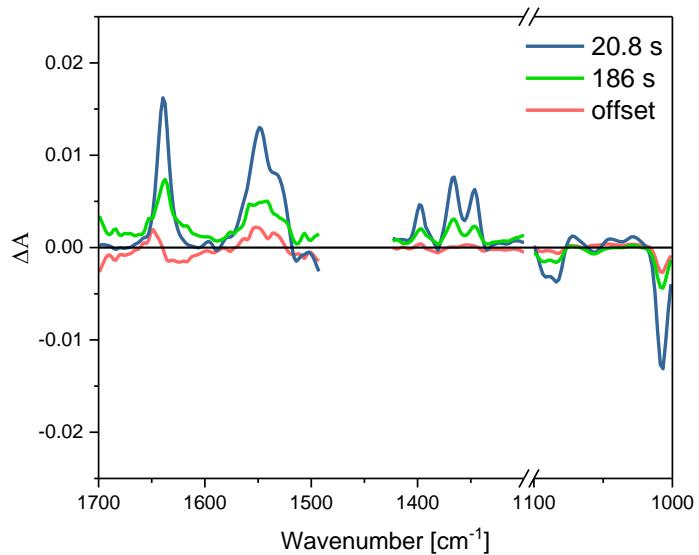

Table S7. Comparison of the geometric parameters (bond lengths, in Å, dihedral angles), adiabatic energies (E_a , in eV) for the conical intersection **CI(S₁/S₀)** geometries designated as CI – obtained by means of the geometry optimization of the minimum energy crossing point (CI) using program^{7, 8} at the **ADC(2)(S₁)/MP2(S₀)/cc-pVDZ** theory level.

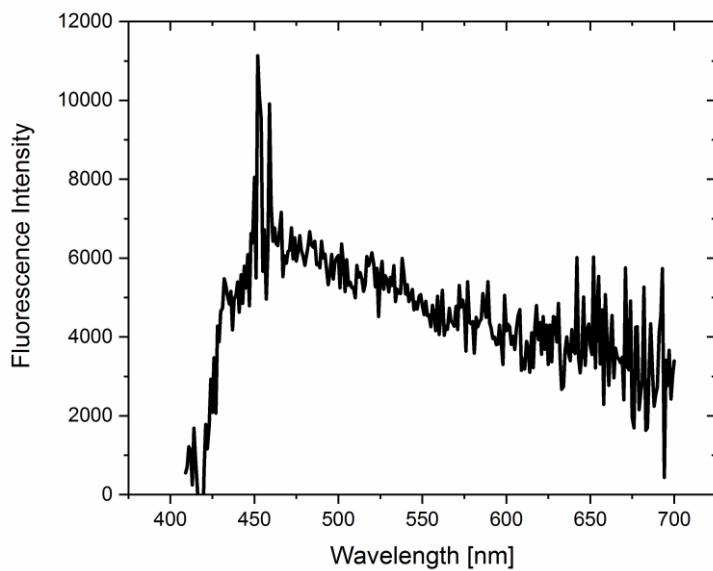
CI	R₁ C ₃ -O ₄ [Å]	δ C ₅ -C ₁₄ -C ₁ -C ₂ [°]	σ C ₁₄ -C ₁ -C ₂ -C ₃ [°]	τ C ₆ -C ₅ -C ₁₄ -C ₁ [°]	R₂ C ₅ -O ₄ [Å]	R_D C ₁ -C ₁₄ [Å]	R_S C ₁ -C ₂ [Å]	R_E C ₂ -C ₃ [Å]	B_{F-N} [°]	BB [°]	E_a [eV]
CI₁	2.389	35.2	16.7	172.5	1.288	1.457	1.376	1.450	86.9	60.6	1.84
CI₂	3.924	22.9	174.7	174.2	1.400	1.479	1.370	1.441	17.1	58.8	2.14
CI₃	4.527	-115.9	170.1	178.7	1.278	1.481	1.366	1.446	30.3	57.7	2.21




Figure S1. Stationary UV-vis absorption spectrum of **NP** in cyclohexane.


Figure S2. Calculated vibrational mid-IR spectra for the optimized structures of **CF** (A), **TC-u** (B), **TT-u** (C) and **TT-d** (D) at the **B3LYP/6-311++G(3df,3pd)** level of theory with polarizable continuum model (PCM) for cyclohexane. Parameters used: $\Delta\tilde{\nu} = 15 cm^{-1}$ (FWHM), scaling factors: 0.9795 (**CF**), 0.9852 (**TC-u**) and 0.9825 (**TT-u** and **TT-d**). Theoretical predictions are compared with experimental data obtained for photolyzed **NP** solution in cyclohexane using time-resolved FT-IR spectroscopy (data from Figure 4, solution thickness 140 μm).


Figure S3. The long-lived **TT-u** population is generated upon 30 s UV irradiation of **NP** solution in cyclohexane (2.8×10^{-3} M, cell with 0.95 mm spacer). Decay of **TT-u** population is observed over tens of hours in the dark at $T = 23^\circ\text{C}$. Time window is 1–1710 min. (*) Artefact due to filling the MCT detector with liquid nitrogen.


Figure S4. **TT-u** absorption spectrum calculated from stationary UV-Vis absorption data recorded with Jasco for UV-irradiated **NP** solution. **CF** contribution was removed from the spectrum using the FT-IR data to estimate the part of **CF** population converted to **TT-u** (on the basis of initial **CF** absorption signal at 1009 cm^{-1} and the **CF** bleach signal at the same wavelength at long delays in the time-resolved FTIR experiment).

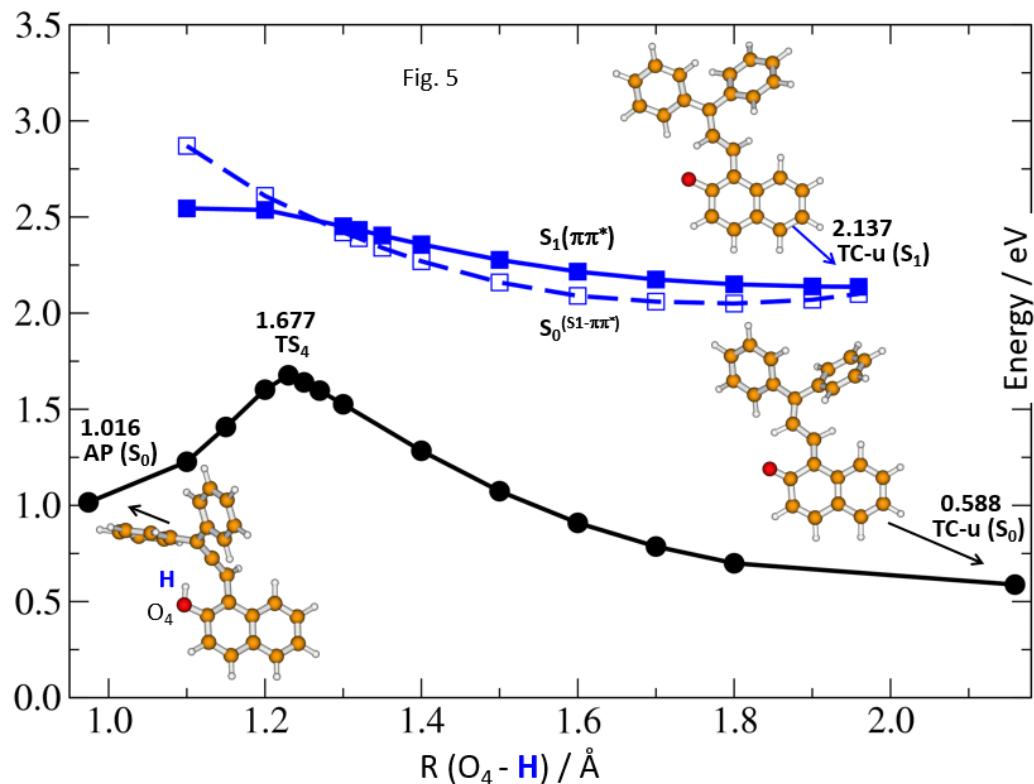

Figure S5. Kinetics at 425 nm for **NP** in cyclohexane upon long UV irradiation period (3×10^{-4} M, $I = 2.7$ mW/cm 2 , $\lambda_{\text{exc}} = 365$ nm, $T = 40^\circ\text{C}$). The kinetic trace indicates that **TT-u** form (offset) is almost equal to the amplitude of the slow rising component before photostationary state is reached.

Figure S6. Switching off UV-irradiation of **NP** in PMMA ($\lambda_{\text{exc}} = 365$ nm, $I = 9.2$ mW/cm 2) leads to decay of the IR absorption bands. The graph shows decay associated spectra with characteristic time constants 20.8 s and 186 s corresponding to **TC-u** form. The offset can be assigned to **TT-u** form. Negative bands reflect **CF** ground state bleaching.

Figure S7. The fluorescence spectrum recorded for **TT-u** (1×10^{-5} M) with excitation at 400 nm. The spectrum is corrected for solvent contribution. Emission spectrum was recorded on a Horiba Jobin-Yvon-Spex Fluorolog 3-22 spectrofluorometer. Right-angle geometry was used. Three fluorescence spectra were collected with 1 nm excitation and emission slits, and 0.5 s integration time. Experiment was performed on 3.5 mL solution samples contained in a quartz cell (1 cm \times 1 cm). A very low fluorescence quantum yield $\Phi_f \approx 7 \times 10^{-5}$ is determined using 9,10-diphenylanthracene in cyclohexane as a standard, $\Phi_f = 0.97$.⁹

Figure S8. Photoinduced ESIPT upon **TC-u** photoexcitation leading to **AP** form.

Important geometries in the Cartesian Coordinates format

Geometry of the conical intersection **CI1** optimized by relaxed scan at the **ADC(2)(S1)/MP2(S0)/cc-pVDZ** theory level.

$E_a = 1.84$ eV

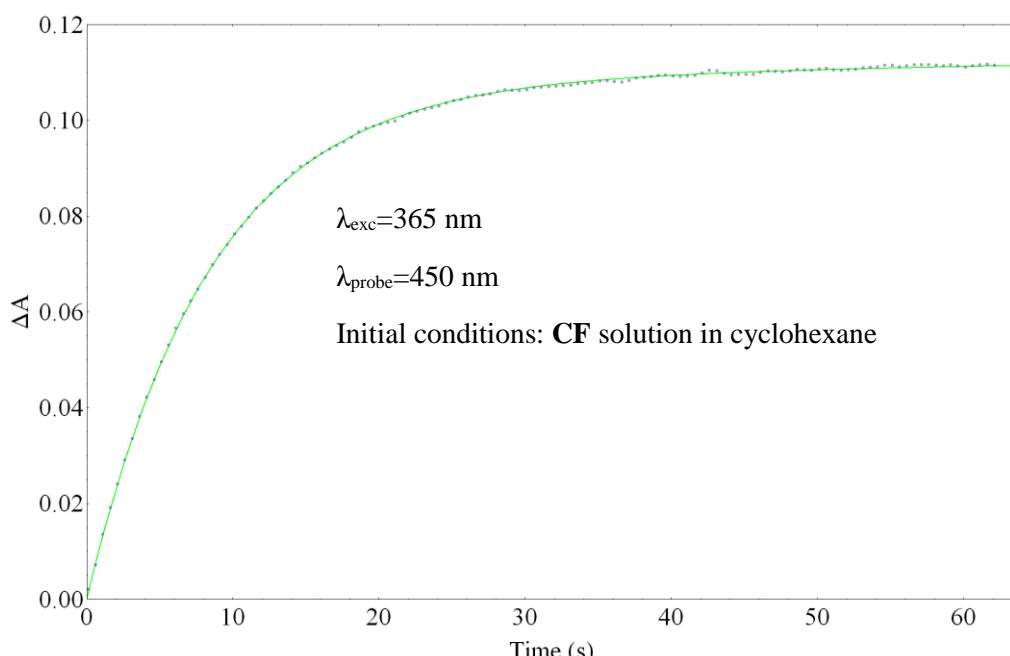
C	-3.28277	-1.39800	-0.95957
C	-4.63635	-1.57624	-0.68759
C	-5.40598	-0.49554	-0.18310
C	-4.81100	0.74235	0.04490
C	-2.79635	2.20596	0.03314
C	-1.44534	2.37291	-0.18337
C	-0.61887	1.31968	-0.73029
C	-1.25642	0.05806	-1.05349
C	-2.64926	-0.13382	-0.76603
C	-3.43083	0.94614	-0.22939
H	-2.68602	-2.24148	-1.32246
H	-5.10312	-2.55397	-0.84680
H	-6.446953	-0.63963	0.03537
H	-5.39766	1.57519	0.44995
H	-3.39781	3.02606	0.44393
H	-0.94450	3.32151	0.03824
O	0.64033	1.52644	-0.90164
C	1.56473	-0.61258	-0.37288
C	0.87034	-1.13106	-1.53480
C	-0.47526	-0.95103	-1.75762
H	-0.95555	-1.47344	-2.59686
H	1.46115	-1.70427	-2.26229
C	0.90644	-0.56622	0.93602
C	-0.11617	-1.48658	1.28243
C	-0.77426	-1.38814	2.51689
C	-0.43029	-0.37482	3.42967
C	0.58997	0.53785	3.09776
C	1.25934	0.44365	1.87068
H	2.01536	1.18324	1.58896
H	-0.37883	-2.28251	0.57812
H	-1.56074	-2.10837	2.76807
H	-0.95296	-0.29434	4.38881
H	0.85777	1.33612	3.79890
C	2.99116	-0.30726	-0.49361
C	3.48554	0.26642	-1.69209
C	4.85422	0.52939	-1.84055
C	5.75561	0.22544	-0.80282
C	5.27185	-0.33976	0.39126
C	3.90316	-0.60020	0.55300
H	3.53214	-1.06112	1.47443
H	2.77146	0.54675	-2.47357
H	5.22091	0.98662	-2.76622
H	6.82460	0.43163	-0.92195
H	5.96805	-0.58382	1.20128

Geometry of the conical intersection **Cl₂** optimized by relaxed scan at the **ADC(2)(S₁)/MP2(S₀)/cc-pVDZ** theory level.

E_a = 2.14 eV

C	-2.75611	-2.35930	-0.10429
C	-3.91878	-3.11380	-0.10672
C	-3.86509	-4.53182	0.05233
C	-2.64494	-5.16402	0.20301
C	-0.16970	-5.04381	0.34362
C	1.01084	-4.29336	0.31599
C	0.93948	-2.89331	0.19599
C	-0.26354	-2.20575	0.09415
C	-1.47316	-2.97511	0.07135
C	-1.42448	-4.41039	0.20970
H	-4.88655	-2.61941	-0.24339
H	-2.81686	-1.27694	-0.25311
H	-4.79184	-5.11514	0.04714
H	-2.58693	-6.25330	0.31292
H	-0.11667	-6.13407	0.44735
H	1.99022	-4.77595	0.40309
O	2.17970	-2.24427	0.18361
C	-0.28526	-0.72676	0.09990
C	0.80708	0.02129	-0.25268
H	-1.17046	-0.23493	0.52124
H	1.70036	-0.51426	-0.62062
C	0.92180	1.45533	-0.17804
C	-0.27561	2.29868	-0.09219
C	2.25670	2.05075	-0.16954
C	-0.30770	3.42876	0.76726
C	-1.46215	4.21886	0.86778
C	-2.60397	3.91373	0.10424
C	-2.58159	2.80423	-0.76105
C	-1.43602	2.00068	-0.85578
H	0.57252	3.65983	1.37688
H	-1.47329	5.07606	1.55003
H	-3.50154	4.53656	0.18041
H	-3.46042	2.56839	-1.37144
H	-1.41097	1.15286	-1.54881
C	2.48132	3.36725	-0.65727
C	3.77248	3.91358	-0.66670
C	4.86755	3.17294	-0.18547
C	4.65700	1.86906	0.30271
C	3.37165	1.31246	0.31538
H	1.63953	3.93992	-1.06027
H	3.92750	4.92453	-1.05980
H	5.87346	3.60578	-0.19120
H	5.50067	1.28721	0.69007
H	3.21380	0.30698	0.72222

Geometry of the conical intersection **Cl3** optimized by relaxed scan at the **ADC(2)(S₁)/MP2(S₀)/cc-pVDZ** theory level.


E_a = 2.21 eV

C	-1.36084	-2.71731	-1.07577
C	-2.35093	-3.63390	-1.40584
C	-2.22320	-4.99563	-1.01459
C	-1.09829	-5.42098	-0.31318
C	1.10641	-4.93353	0.74573
C	2.10654	-4.04278	1.07742
C	2.02163	-2.63368	0.72718
C	0.83946	-2.21906	0.01738
C	-0.19698	-3.11912	-0.34170
C	-0.06580	-4.50830	0.03458
H	-3.23123	-3.30905	-1.97103
H	-1.44877	-1.67193	-1.39325
H	-3.01005	-5.71218	-1.27352
H	-0.99180	-6.47296	-0.02253
H	1.18962	-5.99054	1.02864
H	2.99660	-4.36489	1.63017
O	2.92530	-1.78778	1.04513
C	0.82282	-0.76660	-0.27167
C	-0.10203	0.09385	0.24799
H	-0.95159	-0.32323	0.80690
C	-0.01648	1.53341	0.14517
C	1.26289	2.17948	-0.13906
C	-1.21314	2.33371	0.39211
C	1.30472	3.36824	-0.92001
C	2.52947	3.98066	-1.21438
C	3.73145	3.43967	-0.71927
C	3.70075	2.27009	0.06243
C	2.48450	1.63543	0.35189
H	0.37276	3.77479	-1.32669
H	2.54937	4.88142	-1.83728
H	4.68653	3.92579	-0.94545
H	4.63101	1.84465	0.45341
H	2.47814	0.72275	0.95958
C	-1.12496	3.62766	0.97441
C	-2.28553	4.36695	1.23986
C	-3.55272	3.84523	0.91953
C	-3.65257	2.56662	0.33923
C	-2.49934	1.81366	0.08298
H	-0.14312	4.02294	1.25387
H	-2.20277	5.35424	1.70682
H	-4.45631	4.42916	1.12391
H	-4.63533	2.15811	0.08071
H	-2.58214	0.82860	-0.38957
H	1.65593	-0.37369	-0.87224

Calculation of quantum yields of CF→TC and TC→TT photoconversion reactions

To extract quantum yields of CF→TC, TC→TT and TT→TC photoconversion, we used NDSolve function in Mathematica software, which allowed to solve numerically set of differential equations, which describe observed reactions.¹⁰ Kinetics recorded using Jasco spectrophotometer were fitted by functions obtained iteratively from NDSolve. Rate constants of thermal reactions were determined separately by fitting decay kinetics measured after switching off UV irradiation. Photon flux and initial absorbance were experimentally determined and kept as constraints. The only parameters in fitting procedure were quantum yields. Quantum yields of CF→TC, TC→TT photoconversion were obtained by fitting of kinetics measured at 450 nm during irradiation at 365 nm. Quantum yield of TT→TC photoconversion was obtained by fitting of kinetics measured at 450 nm during irradiation at 408 nm (laser LED).

Incident photon flux I_0 was determined by potassium ferrioxalate actinometer. Potassium ferrioxalate crystals were obtained by reaction of potassium oxalate with iron (III) chloride, and triple recrystallization.¹¹ 0.012 M potassium ferrioxalate solution and 0.1% phenanthroline solution were prepared in appropriate buffers accordingly to Handbook of photochemistry.¹² 1.5 mL actinometer solution in $10 \times 10 \text{ mm}^2$ cuvette (the same type of cuvette and amount of sample was used for naphthopyrans) was irradiated for 10 s, then 250 μL of phenanthroline solution was added and absorption spectrum was measured immediately (experimental conditions were selected to obtain $A(510 \text{ nm})$ between 0.2 and 0.3). Before calculation of photon flux, spectrum obtained for reference (not irradiated) actinometer was subtracted. For 365 nm and 408 nm irradiation 1.22 and 1.15 quantum yields were used, respectively.

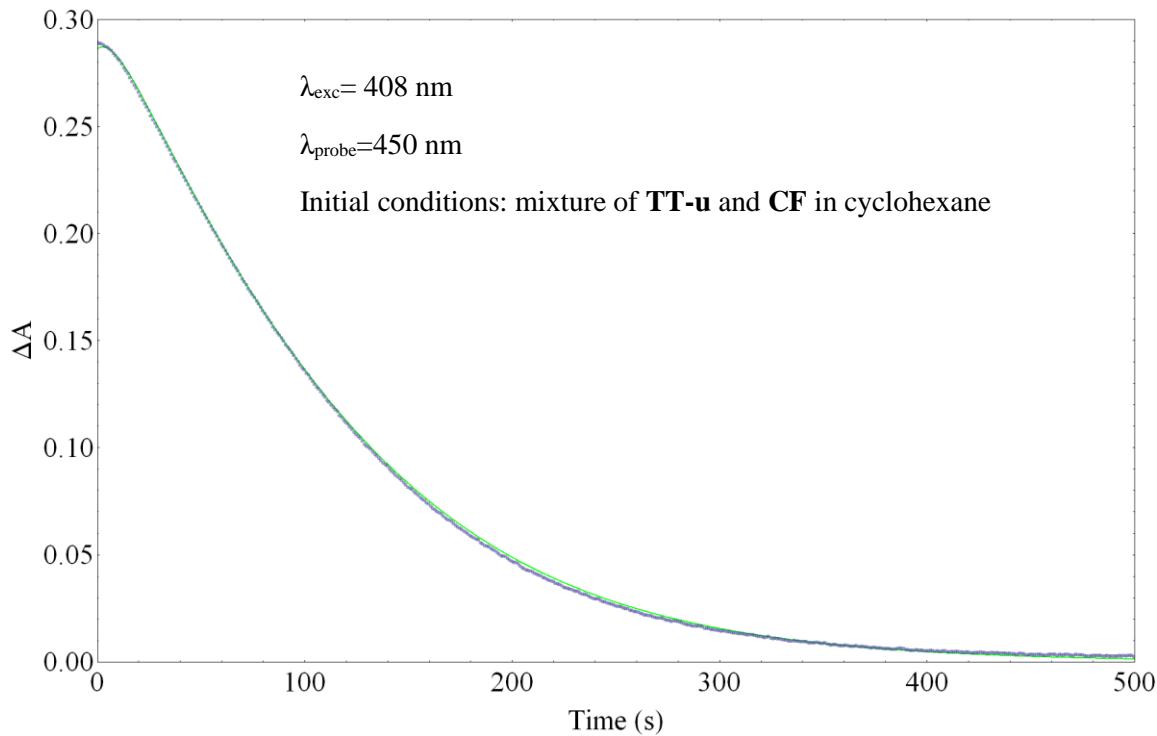
Figure S9. CF solution in cyclohexane in $1 \text{ cm} \times 1 \text{ cm}$ cell with stirring within thermostatic holder ($T = 22^\circ\text{C}$). Switching on UV irradiation (365 nm) causes the increase in absorbance signal at 450 nm.

Following constraints were used:

$\epsilon_{CF}[365] = 3389 \text{ L mol}^{-1} \text{ cm}^{-1}$
 $\epsilon_{CF}[450] = 0 \text{ L mol}^{-1} \text{ cm}^{-1}$
 $\epsilon_{TC}[365] = \epsilon_{CF}[365]$
 $\epsilon_{TC}[450] = 16154 \text{ L mol}^{-1} \text{ cm}^{-1}$
 $\epsilon_{TT}[365] = \epsilon_{CF}[365]$
 $\epsilon_{TT}[450] = 11850 \text{ L mol}^{-1} \text{ cm}^{-1}$
 $I_0 = 0.00000153 \text{ mol L}^{-1} \text{ s}^{-1}$ (incident photon flux)
 $k = 0.1132 \text{ s}^{-1}$ (thermal $TC \rightarrow CF$ reaction)
 $A_0[365] = 0.53$ (initial CF absorbance at excitation wavelength)

Differential equations to solve:

$$\begin{aligned}
 CF'[t] &= -\phi_1 F[t] I_0 \epsilon_{CF}[365] l_i CF[t] + TC[t] k_1, \\
 TC'[t] &= \phi_1 F[t] I_0 \epsilon_{CF}[365] l_i CF[t] - \phi_2 F[t] I_0 \epsilon_{TC}[365] l_i TC[t] - TC[t] k, \\
 TT'[t] &= \phi_2 F[t] I_0 \epsilon_{TC}[365] l_i TC[t],
 \end{aligned}$$


where $CF[t]$, $TC[t]$, $TT[t]$ are concentrations, l_i is irradiation optical path length, $F[t] = \frac{1 - \text{Exp}[-2.3A_T[t]]}{A_T[t]}$ is photokinetic factor, where $A_T[t]$ is total absorbance at probing wavelength.

Obtained quantum yields:

$$\phi_1 = 0.745 \text{ (CF} \rightarrow \text{TC)}$$

$$\phi_2 = 0.1 \text{ (TC} \rightarrow \text{TT)}$$

Calculation of quantum yield of TT \rightarrow TC photoconversion reaction

Figure S10. Mixture of **TT-u** and **CF** in cyclohexane in 1 cm \times 1 cm cell with stirring within thermostatic holder ($T = 22^\circ\text{C}$). Switching on blue irradiation (408 nm) causes the decrease in absorbance signal at 450 nm.

Following constraints were used:

$$\begin{aligned}
 \epsilon_{\text{TT}}[408] &= 18216 \text{ L mol}^{-1} \text{ cm}^{-1} \\
 \epsilon_{\text{TT}}[450] &= 11850 \text{ L mol}^{-1} \text{ cm}^{-1} \\
 \epsilon_{\text{TC}}[408] &= 16200 \text{ L mol}^{-1} \text{ cm}^{-1} \\
 \epsilon_{\text{TC}}[450] &= 16154 \text{ L mol}^{-1} \text{ cm}^{-1} \\
 \epsilon_{\text{CF}}[408] &= 0 \text{ L mol}^{-1} \text{ cm}^{-1} \\
 \epsilon_{\text{CF}}[450] &= 0 \text{ L mol}^{-1} \text{ cm}^{-1} \\
 I_0 &= 0.00000269 \text{ mol L}^{-1} \text{ s}^{-1} \text{ (incident photon flux)} \\
 k &= 0.1132 \text{ s}^{-1} \text{ (thermal TC} \rightarrow \text{CF reaction)} \\
 A_0[408] &= 0.44 \text{ (initial absorbance at excitation wavelength)}
 \end{aligned}$$

Differential equations to solve:

$$\begin{aligned}
 \text{TT}'[t] &= -\phi F[t] I_0 \epsilon_{\text{TT}}[408] l_i \text{TT}[t] \\
 \text{TC}'[t] &= \phi F[t] I_0 \epsilon_{\text{TT}}[408] l_i \text{TT}[t] - \text{TC}[t] k \\
 \text{CF}'[t] &= \text{TC}[t] k,
 \end{aligned}$$

where $\text{CF}[t]$, $\text{TC}[t]$, $\text{TT}[t]$ are concentrations, l_i is irradiation optical path length, $F[t] = \frac{1 - \text{Exp}[-2.3A_T[t]]}{A_T[t]}$ is photokinetic factor, where $A_T[t]$ is total absorbance at probing wavelength.

Obtained quantum yield

$$\phi = 0.107 \text{ (TT} \rightarrow \text{TC)}$$

References

1. I. Schapiro, O. Weingart and V. Buss, *J. Am. Chem. Soc.*, 2009, **131**, 16-17.
2. A. Warshel, *Nature*, 1976, **260**, 679-683.
3. H. Böhnke, J. Bahrenburg, X. Ma, K. Röttger, C. Näther, M. F. Rode, A. L. Sobolewski and F. Temps, *Phys. Chem. Chem. Phys.*, 2018, **20**, 2646-2655.
4. A. Dreuw and M. Wormit, *WIREs Comput. Mol. Sci.*, 2015, **5**, 82-95.
5. C. Hättig and K. Hald, *Phys. Chem. Chem. Phys.*, 2002, **4**, 2111-2118.
6. M. F. Rode and A. L. Sobolewski, *Chem. Phys.*, 2008, **347**, 413-421.
7. B. G. Levine, J. D. Coe and T. J. Martínez, *J. Phys. Chem. B*, 2008, **112**, 405-413.
8. R. Szabla, R. W. Góra and J. Šponer, *Phys. Chem. Chem. Phys.*, 2016, **18**, 20208-20218.
9. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850-9860.
10. J. C. Crano and R. Guglielmetti, *Organic photochromic and thermochromic compounds: Physicochemical studies, biological applications, and thermochromism*, Plenum Press, New York, 1999.
11. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, *Pure Appl. Chem.*, 2004, **76**, 2105–2146.
12. M. Montalti, A. Credi, L. Prodi and M. Gandolfi, *Handbook of Photochemistry*, CRC Press, Boca Raton, 2006.