Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplemental Material for "Fundamental Crystal Field Excitations in Magnetic Semiconductor SnO_2 :Mn, Fe, Co, Ni"

B. Leedahl, D. J. McCloskey, D. W. Boukhvalov, 3 I. S. Zhidkov, A. I. Kukharenko, E. Z. Kurmaev, 3,4 S. O. Cholakh, N. V. Gavrilov, V. I. Brinzari, and A. Moewes A. Moewes

¹Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada*

²College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China

³Institute of Physics and Technology, Ural Federal University,

 $Mira\ 9\ str.,\ 620002\ Yekaterinburg,\ Russia$

⁴M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences,

S. Kovalevskoi 18 str., 620990 Yekaterinburg, Russia

 $^5 Institute \ of \ Electrophysics, \ Russian \ Academy \ of \ Sciences,$

Ural Branch, 620990 Yekaterinburg, Russia

 $^6Pokatilov\ Laboratory\ of\ Physics\ and\ Engineering\ of\ Nanomaterials,$

Department of Theoretical Physics, Moldova State University,

Chisinau MD-2009, Republic of Moldova

	Ox. State.	10Dq	Ds	Dt	β
Mn	2+	0.65	0	0	0.2
Fe	2+	1.0	0	0	0.5
Fe	3+	1.5	0	0	0.7
Со	2+	1.8	-0.03	0.03	0.67
Ni	2+	1.55	0	0	0.5

TABLE S1. Shown are the crystal field parameters for the calculated XAS and RIXS spectra in Figures 2 and 3 of main manuscript. The units for 10Dq, Ds, and Dt are eV, while β is unitless and corresponds to the scaling of the interatomic Slater integrals.

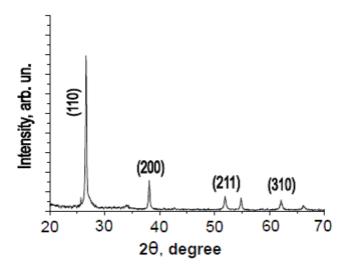


FIG. S1. XRD pattern of SnO₂ undoped films (before implantation) deposited by spray pyrolysis. $T_{deposition} = 450^{\circ} \text{C. Film thickness} \approx 100 \, \text{nm}.$

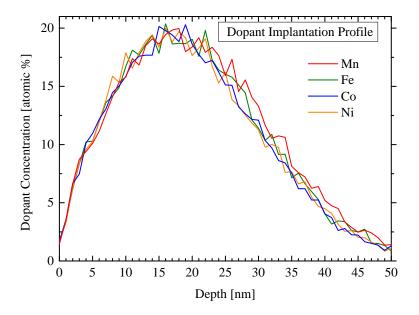


FIG. S2. Calculated dopant profile due to ion implantation. The absolute concentration was estimated using the XPS survey spectra which is sensitive to the first $\approx 5\,\mathrm{nm}$. While the shape profile was estimated using SRIM software. As expected, there is no significant difference between dopants.