Supplementary Information

Foreign atom encapsulated Au₁₂ cage clusters for catalysis of CO oxidation

Si Zhou, Wei Pei, Qiuying Du, Jijun Zhao *

Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

^{*} Corresponding author. Tel: 86-0411-84709748, E-mail: zhaojj@dlut.edu.cn

S1. Adsorption energies of reaction intermediates

We calculated the adsorption energies of molecules and reaction intermediates involved in CO oxidation on the M@Au₁₂ clusters, including O_2 , CO, co-adsorbed O_2 and CO molecules (* O_2 -*CO), and co-adsorbed O atom and CO molecule (*O-*CO). Their adsorption energies are defined as follows:

$$E_{\rm O2} = E_{\rm total} - E_{\rm M@Au12} - E_{\rm O2}$$
(S1)

$$E_{\rm CO} = E_{\rm total} - E_{\rm M@Au12} - E_{\rm CO}$$
(S2)

$$E_{*O2-*CO} = E_{\text{total}} - E_{M@Au12} - E_{O2} - E_{CO}$$
(S3)

$$E_{*O-*CO} = E_{\text{total}} - E_{M@Au12} - 1/2E_{O2} - E_{CO}$$
(S4)

where E_{total} and $E_{\text{M}@\text{Au12}}$ are the energies of a M@Au₁₂ cluster with and without adsorption of the molecule or reaction intermediate, respectively; E_{O2} and E_{CO} are the energies of gaseous O₂ and CO molecules in vacuum, respectively.

Fig. S1 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the V@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S2 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Nb@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S3 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Ta@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S4 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the $Cr@Au_{12}$ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S5 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Mo@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S6 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the W@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S7 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Mn@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S8 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Re@Au₁₂ cluster under the L-H mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S9 Reaction pathway of CO oxidation under the L-H mechanism on (a) V@Au₁₂,
(b) Nb@Au₁₂, (c) Ta@Au₁₂, and (d) Cr@Au₁₂ clusters, respectively. The numbers indicate the kinetic barriers.

Fig. S10 Reaction pathway of CO oxidation under the L-H mechanism on (a) $Mo@Au_{12}$, (b) $W@Au_{12}$, (c) $Mn@Au_{12}$, and (d) $Re@Au_{12}$ clusters, respectively. The numbers indicate the kinetic barriers.

Fig. S11 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the V@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S12 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Nb@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S13 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Ta@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S14 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the $Cr@Au_{12}$ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S15 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Mo@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S16 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the W@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S17 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Mn@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S18 Atomic structures of reaction intermediates and transition state (TS) of CO oxidation on the Re@Au₁₂ cluster under the E-R mechanism. Some key bond lengths and interatomic distances are presented in unit of Å.

Fig. S19 Reaction pathway of CO oxidation under the E-R mechanism on (a) $V@Au_{12}$, (b) Nb@Au_{12}, (c) Ta@Au_{12}, and (d) Cr@Au_{12} clusters, respectively. The numbers indicate the kinetic barriers.

Fig. S20 Reaction pathway of CO oxidation under the E-R mechanism on (a) $Mo@Au_{12}$, (b) $W@Au_{12}$, (c) $Mn@Au_{12}$, and (d) $Re@Au_{12}$ clusters, respectively. The numbers indicate the kinetic barriers.

Fig. S21 Local density of states (LDOS) of various $M@Au_{12}$ clusters (M = V, Nb, Mo, W, and Re). For each system, the HOMO level marked by the black dashed line is shifted to zero, and the red dashed lines and the numbers next to them indicate the *d* band center relative to HOMO.