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Jesús Algaba,1 José Manuel Ḿıguez,1 Bruno Mendiboure,2 and Felipe J. Blas1, a)

1) Laboratorio de Simulación Molecular y Qúımica Computacional,
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I. HOMOGENEOUS FLUID OF MIE CHAIN MOLECULES (SAFT-VR

MIE)

Before presenting the Helmholtz free energy functional to deal with inhomogeneous fluids,

we briefly summary the main equations and approximations developed by Lafitte et al.1 to

obtain the SAFT-VR Mie formalism. Here we follow the traditional SAFT formalism for

the EOS of chain molecules formed from Mie segments. As in all SAFT approaches, a fluid

of N chains of ms Mie segments is formed from a total of Ns = msN segments. In addition

to that, the number density of chain molecules ρ = N/V and of segments ρs = Ns/V are

related simply through the well-known relationship ρs = msρ. It is convenient to use the

dimensionless Helmholtz free energy of the fluid a = A/(NkBT ), where kB is the Boltzmann

constant and T the temperature of the system. The dimensionless Helmholtz free energy a

of the homogeneous fluid is written as a perturbation expansion which takes into account

the various types of interactions, ideal, monomer segment, and chain:

a = aIDEAL + aMONO + aCHAIN (1)

A. Ideal contribution

The ideal-gas term is given in the standard form as2

aIDEAL(ρ) = ln(ρΛ3)− 1 (2)

where Λ is a thermal de Broglie wavelength which contains the translational and rotational

contributions to the partition function of the ideal chain; the kinetic contributions do not

have to be specified explicitly as they do not contribute to the fluid-phase equilibria and

interfacial properties.

B. Monomer contribution for Mie fluids

The term aMONO combines the repulsive and dispersive contributions to the free energy

of the reference monomeric spherical segments making up the chain molecules:
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aMONO = msa
M (3)

where aM = AM/(NskBT ) is the corresponding residual Helmholtz free energy per monomer.

According to the perturbation series expansion in the inverse of the temperature β =

1/(kBT ) up to third series developed by Lafitte et al.1 (based on a high-temperature Barker

and Henderson (BH)3,4 perturbation expansion about a hard-sphere reference system), the

free energy of the monomers can be written as,

aM = aHS + βa1 + β2a2 + β3a3 (4)

where aHS is the reference hard-sphere free energy calculated by integrating the well-known

Carnahan and Starling5 EOS,

aHS =
4η − 3η2

(1− η)2
(5)

Here η = ρsπd
3/6 is the packing fraction of the reference hard-sphere system. Here, d is the

hard-sphere diameter of Barker and Henderson given by Eq. (7) in the work of Lafitte et al.1

The first-order perturbation term a1 is calculated from the expression of the mean-

attractive energy in the BH approach for a Mie potential obtained by Lafitte et al.,1

a1 = C
[
xλa0

{
aS1 (η;λa) +B(η;λa)

}
− xλr0

{
aS1 (η;λr) +B(η;λr)

}]
(6)

Here, x0 = σ/d is the reduced diameter σ with respect to the diameter d. The first-order

perturbation term depends basically on two main functions: aS1 , that depends on η and λa,

and B, that depends on η and λr.

The first function, aS1 , is the first-order term of the Helmholtz free energy of a system of

hard-core Sutherland particles of diameter d characterized by the range parameter λ. This

expression was evaluated within the SAFT-VR by making use of the mean-value theorem

by Gil-Villegas et al.,6

aS1 = 2πρsεd
3

ˆ ∞
1

(
− 1

xλ

)
gHSd (xd)x2dx = 12εη

ˆ ∞
1

(
− 1

xλ

)
gHSd (xd)x2dx

= −12εη

(
1

λ− 3

)
gHSd (ξ) = −12εη

(
1

λ− 3

)
gHSd (d; ηeff ) (7)
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In the previous equation, the radial distribution function of the hard-sphere reference gd(xd)

is calculated numerically by making use of an integral-equation theory. Once this is done,

the integral in Eq. (7) is evaluated as a function of the exponent λ and packing fraction η.

By using the mean-value theorem, it is possible to determine analytically the integral and,

as in the original SAFT-VR formalism6, to evaluate aS1 as a function of the contact radial

distribution function gHSd (d) evaluated at an effective density ηeff ,

gHSd (d; ηeff ) =
1− ηeff (η;λ)/2[
1− ηeff (η;λ)

]3 (8)

Note that the above expression is consistent with the Carnahan and Starling5 EOS. The

analytic expression for aS1 given by Eq. (7) is only possible if the dependence of the ef-

fective packing fraction ηeff on λ and η is known. We use here the new parametrization

proposed by Lafitte et al.1, that accounts for a broader range of exponents than the original

parametrization of Gil-Villegas et al.6, i.e., 5 ≤ λ ≤ 100,

ηeff = c1(λ)η + c2(λ)η2 + c1(λ)η3 + c4(λ)η4 (9)

with


c1

c2

c3

c4

 =


0.81096 1.7888 −37.578 92.284

1.0205 −19.341 151.26 −463.50

−1.9057 22.845 −228.14 973.92

1.0885 −6.1962 106.98 −677.64

 .


1

1/λ

1/λ2

1/λ3

 (10)

See the work of Lafitte et al.1 to check the ability of the analytic Eq. (7) describing the

dependence of aS1 with ρs of the BH perturbation term of the Sutherland fluid with varying

attractive exponent λ.

The first-order perturbation term a1 also depends on the function B(η;λ),1

B(η;λ) = 12ηε

[
1− η/2
(1− η)3

Iλ(λ)− 9η(1 + η)

2(1− η)3
Jλ(λ)

]
(11)

with Iλ(λ) defined as,

Iλ(λ) = −(x0)
3−λ − 1

λ− 3
(12)
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and Jλ(λ) as,

Jλ(λ) = −(x0)
4−λ(λ− 3)− (x0)

3−λ(λ− 4)− 1

(λ− 3)(λ− 4)
(13)

As it will become clear in the next Section, it is useful to partition the mean-attractive

energy or first-order perturbation to the free energy a1 = aSR1 + aLR1 into short-range, aSR1 ,

and long-range, aLR1 parts. The short-range contribution is written as

aSR1 = a1 − aV DW1 (14)

where aV DW1 is the long-range contribution represented by the van der Waals attractive term

(at the mean-field level of approximation) given by

aV DW1 = 2πβ αρs (15)

α is a single dimensionless van der Waals-like attractive constant given in terms of the Mie

intermolecular potential as

α =
1

εσ3

ˆ ∞
σ

φ(r)r2dr = C
(

1

λa − 3
− 1

λr − 3

)
(16)

The second-order term a2 (fluctuation contribution) is much more difficult to obtain as

it requires a knowledge of two-, three-, and four-body correlation functions of the reference

system. Lafitte et al.1 used the idea of Zhang7 who proposed an improved macroscopic

compressibility approximation (MCA) assuming that the number of molecules in neighboring

coordination shells are correlated. Following this approach, a2 may be written as an algebraic

expression using the same procedure used for a1,

a2 = −πρsχ
ˆ ∞
σ

gHSd (r)[φ(r)]2r2dr =
1

2
KHS(1 + χ)εC2

[
x2λa0

{
aS1 (η; 2λa) +B(η; 2λa)

}
− 2xλa+λr0

{
aS1 (η;λa + λr) +B(η;λa + λr)

}
− x2λr0

{
aS1 (η; 2λr) +B(η; 2λr)

}]
(17)

Here KHS is the isothermal compressibility of the hard-sphere reference fluid, which is

obtained form the density derivative of the Carnahan and Starling5 expression for the com-

pressibility factor,
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KHS =
(1− η)4

1 + η + 4η2 − 4η3 + η4
(18)

The correction pre-factor χ used by Lafitte et al.1 is a more-generic factor than that used

originally by Zhang7,

χ = f1(α)ηx30 + f2(α)(ηx30)
5 + f3(α)(ηx30)

8 (19)

The functions fi (i = 1, 2, 3) depend on both the attractive and repulsive exponents of

the Mie potential through the single dimensionless van der Waals-like attractive constant α

defined previously in Eq. (16). The specific functional dependence of fi on α is given by,

fi(α) =

(
3∑

n=0

φi,nα
n

)/(
1 +

6∑
n=4

φi,nα
n−3

)
i = 1, . . . 6 (20)

Coefficients φi,n are given in Table II of the work of Lafitte et al.1.

Finally, the third-order term a3 proposed by Lafitte et al.1 is expressed as an empirical

expression similar to the correction pre-factor defined in Eq. (19),

a3 = −ε3f4(α)ηx30 exp
(
f5(α)ηx30 + f6(α)ηx60

)
(21)

Note that the expression has a functional form that is independent of temperature. Functions

fi (i = 4, 5, 6) are functions of α as defined previously in Eq. (20).

C. Chain contribution

The term aCHAIN takes into account the contribution to the free energy due to the

formation of a chain molecule of ms Mie monomers tangentially bonded at r = σ. It can be

expressed in the standard Wertheim TPT18 form as,

aCHAIN = −(ms − 1)ln gMie(σ) (22)

where the radial distribution function of the Mie reference fluid at contact is given by,1

gMie(σ) = gHSd (σ)exp

[
(βε)

g1(σ)

gHSd (σ)
+ (βε)2

g2(σ)

gHSd (σ)

]
(23)
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The zeroth-order term gHSd (σ) is given here by the semi-empirical representation proposed

by Boubĺık9, valid for 1 < x0 <
√

2,

gHSd (σ) = gHSd (x0d) = exp
[
(k0 + k1x0 + k2x

2
0 + k3x

3
0)
]

(24)

where the density-dependent coefficients ki are given by,9

k0 = −ln (1− η) +
42η − 39η2 + 9η3 − 2η4

6(1− η)3
(25)

k1 =
η4 + 6η2 − 12η

2(1− η)3
, (26)

k2 =
−3η2

8(1− η)2
, (27)

and

k3 =
−η4 + 3η2 + 3η

6(1− η)3
(28)

The first- and second-order terms, g1(σ) and g2(σ), respectively, are given by,

g1(σ) ≈ g1(d) =
1

2πεd3

[
3
∂a1
∂ρs
− Cλaxλa0

aS1 (η;λa +B(η;λa)

ρs
+ Cλrxλr0

aS1 (η;λr +B(η;λa)

ρs

]
(29)

and

g2(σ) ≈ g2(d) = (1 + γc) g
MCA
2 (d) (30)

Lafitte et al.1 propose a simple empirical correlation given by the previous equation, in which

γc is a correction factor that is a function of both density and temperature,

γc = φ7,0

[
−tanh

{
φ7,1(φ7,2 − α)

}
+ 1
]
ηx30 θ × exp

[
φ7,3 ηx

3
0 + φ7,4 η

2x60
]

(31)

where θ = exp (βε)− 1, and coefficients φ7,1, φ7,2, φ7,3, and φ7,4 are given in Table II of the

work of Lafitte et al.1. gMCA
2 (σ) may be expressed as,

7



gMCA
2 (σ) =

1

2πε2d3

[
3
∂

∂ρs

(
a2

1 + χ

)
− εKHSC2λrx2λr0

aS1 (η; 2λr) +B(η; 2λr)

ρs

+ εKHSC2(λr + λa)x
λr+λa
0

aS1 (η;λr + λa) +B(η;λr + λa)

ρs

− εKHSC2λax2λa0

aS1 (η; 2λa) +B(η; 2λa)

ρs

]
(32)

II. INHOMOGENEOUS FLUID OF ASSOCIATING CHAIN MOLECULES

(SAFT-VR MIE DFT)

The new Helmholtz free energy functional presented in this work, given by Eq. (5) in the

paper, is expressed in terms of an ideal, AIDEAL[ρ(r)], a reference, AREFMie,MF [ρ(r)], and an

attractive contribution, AATTMie,MF [ρ(r)],

ASAFT−V RMie,MF [ρ(r)] = AIDEAL[ρ(r)] + AREFMie,MF [ρ(r)] + AATTMie,MF [ρ(r)]. (33)

where AREFMie,MF [ρ(r)] is the reference term that incorporates the repulsive hard-sphere, the

perturbative terms due to the attractive interactions, and the chain term,

AREFMie,MF [ρ(r)] = AHS[ρ(r)] + ASR1 [ρ(r)] + A2[ρ(r)] + A3[ρ(r)] + ACHAIN [ρ(r)] (34)

Here we explain in detail the particular functional forms of the ideal and all the reference

contributions. The reduced ideal Helmholtz free energy of an inhomogeneous system of

nonspherical particles can be written as2,10,

AIDEAL = kBT

ˆ
dr f IDEAL(ρ(r)) = kBT

ˆ
dr ρ(r) aIDEAL(ρ(r)) (35)

The hard-sphere interaction is short ranged and is usually treated locally in a perturbative

DFT treatment of the vapor-liquid interface10–14; such functionals based on the local density

approximation (LDA) of the reference term provide a good description of the vapor-liquid

interface, although the approach fails for fluids close to their triple points or for confined

systems where a weighted-density approximation (WDA) has to be used. In our SAFT-VR

Mie DFT the hard-sphere LDA free energy functional is given by
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AHS[ρ(r)] = kBT

ˆ
dr fHS(ρ(r)) = kBT

ˆ
dr ρ(r)maHS(ρ(r)), (36)

where the expression for aHS(ρ(r)) is written as a function of the packing fraction profile

η(r) = (πd3/6)ρs(r) in the Carnahan and Starling form (see Eq. (5)).

The first-order contribution to the free energy of Mie spheres due to the short-range part

of the correlations in the attractive term, as well as the second- and third-order contributions

are contained in ASR1 [ρ(r)], A2[ρ(r)], and A3[ρ(r)], respectively. The three contributions are

defined in terms of the bulk terms aSR1 , a2, and a3 given by Eqs. (14), (17), and (21),

respectively. As all these contributions present a short-range interaction it can be treated

locally as12

ASR1 [ρ(r)] = kBT

ˆ
dr fSR1 (ρ(r)) = kBT

ˆ
dr ρ(r)maSR1 (ρ(r)), (37)

A2[ρ(r)] = kBT

ˆ
dr f2(ρ(r)) = kBT

ˆ
dr ρ(r)ma2(ρ(r)), (38)

and

A3[ρ(r)] = kBT

ˆ
dr f3(ρ(r)) = kBT

ˆ
dr ρ(r)ma3(ρ(r)), (39)

The chain contribution to the SAFT free energy, given by Eq. (22) can be written in

terms of the contact value of the pair radial distribution function of the reference monomer

system, which is clearly a ‘short-range’ contribution and can also be approximated by a local

functional12. The contribution to the reference free energy functional for the formation of a

chain of m Mie segments is written at the LDA level as

ACHAIN [ρ(r)] = kBT

ˆ
dr fCHAIN(ρ(r)) = kBT

ˆ
dr ρ(r) aCHAIN(ρ(r)), (40)

where aCHAIN(ρ(r)) is the function of density given by Eq. (22). This LDA treatment,

that has been introduced and used by Gloor et al.12, it provides a very good description

of the vapor-liquid surface tension of moderately long chainlike molecules. In essence this

approximation amounts to determining the average density profile for the segments making

up the chain without specifying which chain the segments belong to. This is an alternative

way of describing the density profiles of molecules in comparison with WDA treatments,
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such as those developed by Kierlik and Rosinberg15,16 and the iSAFT formalism of Tripathi

and Chapman17,18, in which the position of each segment of the chain is treated explicitly.

As was mentioned in the paper, the equilibrium interfacial profile is the one that minimizes

the grand potential. In the case of the SAFT-VR Mie MF DFT that has just been described,

the corresponding Euler-Lagrange equation is obtained as

δΩ[ρ(r)]

δρ(r)

∣∣∣∣
eq

=
δA[ρ(r)]

δρ(r)
− µ

=
δAIDEAL[ρ(r)]

δρ(r)
+
δAREFMie,MF [ρ(r)]

δρ(r)
+
δAATTMie,MF [ρ(r)]

δρ(r)
− µ = 0 (41)

The variation of the ideal and reference contributions with respect to ρ(r) correspond to

the local chemical potentials µIDEAL(ρ(r)) = δAIDEAL[ρ(r)]
δρ(r)

and µREFMie,MF (ρ(r)) =
δAREF

Mie,MF [ρ(r)]

δρ(r)

(which can be obtained from the corresponding expressions for the homogeneous system,

through µ = kBT{a+ ρ∂a/∂ρ}), while the variation of the attractive term requires a knowl-

edge of the density derivative of the correlation function. The equilibrium profile can thus

be determined by solving the equation

µ = µIDEAL(ρ(r)) + µREFMie,MF (ρ(r)) +

ˆ
dr′ m2 ρ(r′) φ(|r− r′|), (42)

which ensures that the chemical potential at each point in the profile is equal to the bulk

chemical potential µ11.

In order to achieve an accurate solution the region over which the density profile deviates

from the vapor and liquid bulk densities (interfacial thickness) must be narrower than the

interval over which Eq. (4) of the paper or Eq. (42) is solved. Widths ranging from |zmax −

zmin| ∼ 2σ for states at a temperature T ∼ Tc/2 (where Tc is the critical temperature ) to

|zmax−zmin| ∼ 15σ at 0.98Tc. The integration in the z direction is performed numerically by

selecting the range from zmin to zmax over which to integrate, and the interval is discretised

into a large number of points zi (typically 200 grid points per σ). A numerical integration of

Eq. (41) is then performed by starting from a trial density profile ρold with limiting densities

ρ(zmax) and ρ(zmin) which correspond to the vapor and liquid equilibrium bulk densities

(the initial profile could be represented by a step profile), and solving the Euler-Lagrange

equation numerically at each point zi. This results in a new density profile ρnew and the

10



process is repeated until the density at each point zi changes by no more than a specified

tolerance.
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