Aromaticity and photophysics of tetrasila- and tetragerma-annelated tetrathienylenes as new representatives of the hetero[8]circulenes family

G. V. Baryshnikov,^{*a,b,**} R. R. Valiev,^{*c,d*} V. N. Cherepanov,^{*d*}

N. N. Karaush-Karmazin,^b V. A. Minaeva,^b B. F. Minaev,^b H. Ågren^{a,d}

^a Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden

^b Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031, Cherkasy, Ukraine

^c Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia ^d Tomsk State University, 36 Lenin Avenue, Tomsk, Russia

ELECTRONIC SUPPORTING INFORMATION (ESI)

Computational details on photophysics calculations	P.2		
Table S1. Calculated bond lengths (Å) in the ground and first excited singlet			
state of tetrasilatetrathia[8]circulene and tetragermatetrathia[8]circulene			
molecules			
Figure S1. The shape of frontier molecular orbitals of the 4S4SiEt ₂ and	P.5		
4S4GeEt ₂ molecules			
Figure S2. The shape of promotive modes in the absorption vibronic spectra	P.5		
of 4S4SiEt ₂ (4S4GeEt ₂) molecules and their H-substituted 4S4SiH ₂			
$(4S4GeH_2)$ models.			
Figure S3. The shape of promotive modes in the fluorescence vibronic spectra	P.6		
of 4S4SiEt ₂ (4S4GeEt ₂) molecules and their H-substituted 4S4SiH ₂			
$(4S4GeH_2)$ models.			
	1		

Computational details on photophysics calculations

The ISC and IC non-radiative rate constants were calculated using the method describing in Ref.¹ The general formula for the calculation of radiationless rate constants (k_{nr}) according to this method is:

$$k_{\rm nr} = \sum_{n} \left| V_{i0,fn} \right|^2 \Gamma_{fn} \left[\Delta_{if}^2 + \frac{\Gamma_{fn}^2}{4} \right]^{-1} (1),$$

where *i* is the initial electronic state, *f* is the final electronic state, *n* is a vibrational level of *f*, Γ_{fn} is the relaxation width of the vibronic level |fn>, $\Delta_{if} = |E_{i0}-E_{fn}|$ is the resonance defect energy between the initial and final vibronic states, and $V_{i0,fn}$ is the matrix element of the perturbation operator. Only the lowest vibronic state is considered for the initial state at room temperature. In the case of ISC, the perturbation operator is the spin-orbit coupling interaction, and for IC is the non-adiabatic coupling interaction one. Eq. (1) written in atomic units holds at ambient temperatures (T ≤ 300 K) when $k_{trr} \ll \Gamma_{fn}$. Γ_{fn} is about 10¹⁴ s⁻¹, and is generally much larger than k_{nr} which typically has values around 10⁷-10¹² s⁻¹.¹ The Δ_{if} value is not larger than 100 cm⁻¹ for polyatomic molecules.¹ The expression can be simplified to Eq. (2) when assuming that Γ_{fn} depends only weakly on the vibrational level *n*, and that $\Delta_{if} << \Gamma_{fn}$:¹

$$k_{\rm nr} = 1.6 \cdot 10^9 \sum_{n} \left| V_{i0,fn} \right|^2 (2).$$

where $|V_{i0,fn}|$ in cm⁻¹, k_{nr} in s⁻¹. The matrix element $|V_{i0,fn}|$ of ISC is

$$\left| V_{i0,fn} \right| = < i \left| \hat{H}_{SO} \right| f > \left(\prod_{k=1}^{3N-6} \sqrt{\frac{\exp(-y_k) y_k^{n_k}}{n_k!}} \right) (3)$$

and for IC is

$$\left| V_{i0,fn} \right| = -\sum_{v} \sum_{q=x,y,z} M_{v}^{-1} < i \left| \frac{\partial}{\partial R_{qv}} \right| f > \left[\sum_{j=1}^{3N-6} B_{vqj} < 0_{j} \left| \frac{\partial}{\partial Q_{j}} \right| n_{j} > \prod_{\substack{k \neq j \\ k=1}}^{3N-6} \sqrt{\frac{\exp(-y_{k})y_{k}^{n_{k}}}{n_{k}!}} \right] (4),$$

where y_k is the Huang-Rhys factor of the *k-th* mode and ω_k is the frequency of the *k-th* mode, $\langle i | H_{so} | f \rangle$ and $\langle i | \frac{\partial}{\partial R_{qv}} | f \rangle$ are the matrix elements of the spinorbital coupling interaction operator H_{so} and non-adiabatic coupling interaction operator $(\frac{\partial}{\partial R_{qv}})$ between the initial and final electronic states *i* and *f*, respectively. The E_{if} is the energy gap between the electronic states, $\{R_{qv}\}$ are the Cartesian coordinates, M_v is mass of *v*-th atom. The $|n_j\rangle$ is the wave-function of *j*-th harmonic oscillator and n_j is number of excitation and Q_j is its normal coordinate. The B_{vqj} is the matrix relationship between $\{R_{qv}\}$ and $\{Q_j\}$.

The Huang-Rhys factors were calculated according to Eq (5):

$$y_j = \frac{1}{2}\omega_j \Delta Q_j^2 \quad (4),$$

where ΔQ_j^2 is the equilibrium position displacement of the *j*-th mode¹.

The radiative rate constant was calculated using modified Strickler–Berg equation²:

$$k_r = \frac{1}{1.5003} f \cdot E_{if}^2$$
 (5),

where f – ocillator strenghts and E_{if} (in cm⁻¹).

[1] R. R. Valiev, V. N. Cherepanov, G. V. Baryshnikov and D. Sundholm, *Phys. Chem. Chem. Phys.*, 2018, **20**, 6121.

[2] Strickler S. J. and Berg R. A. // J. Chem. Phys. – 1962. – V. 37. – No. 4 – P. 814–822.

	Si		Ge		
Bond	S_0	S_1	S_0	S_1	
r_1	1.437/1.428	1.429	1.442/1.437	1.434	
r_2	1.400/1.401	1.443	1.397/1.397	1.396	
r_3	1.718/ 1.704	1.710	1.712/1.697	1.749	
r_4	1.718/1.704	1.754	1.712/1.698	1.704	
r_5	1.400/ 1.401	1.398	1.397/1.394	1.445	
r_6	1.871/ 1.863	1.884	1.921/1.939	1.921	
<i>r</i> ₇	1.871/ 1.866	1.853	1.921/1.930	1.920	
r_8	1.400/ 1.396	1.408	1.397/1.395	1.444	
r ₉	1.493/ 1.489	1.485	1.495/ 1.496	1.446	
<i>r</i> ₁₀	1.718/ 1.704	1.733	1.712/1.696	1.704	
<i>r</i> ₁₁	1.718/ 1.703	1.732	1.712/1.698	1.750	
<i>r</i> ₁₂	1.400/ 1.399	1.410	1.397/1.398	1,397	
<i>r</i> ₁₃	1.437/ 1.431	1.423	1.442/1.433	1.434	
<i>r</i> ₁₄	1.871/ 1.865	1.864	1.922/ 1.930	1.930	
r_{15}	1.872/ 1.865	1.862	1.922/ 1.928	1.907	
r_{16}	1.400/ 1.398	1.410	1.396/ 1.394	1.405	
r_{17}	1.493/ 1.490	1.480	1.495/ 1.487	1.486	
<i>r</i> ₁₈	1.437/ 1.430	1.422	1.442/ 1.439	1.429	
r_{19}	1.718/ 1.705	1.732	1.712/ 1.692	1.726	
r_{20}	1.718/ 1.705	1.735	1.712/ 1.696	1.726	
<i>r</i> ₂₁	1.400/ 1.400	1.409	1.397/ 1.392	1.405	
<i>r</i> ₂₂	1.871/ 1.862	1.852	1.921/1.929	1.915	
<i>r</i> ₂₃	1.871/ 1.862	1.884	1.921/ 1.926	1.916	
<i>r</i> ₂₄	1.400/ 1.402	1.399	1.397/ 1.391	1.405	
<i>r</i> ₂₅	1.493/ 1.488	1.484	1.494/ 1.491	1.483	
<i>r</i> ₂₆	1.718/ 1.704	1.754	1.712/1.700	1.725	
<i>r</i> ₂₇	1.718/ 1.702	1.711	1.712/ 1.698	1.724	
<i>r</i> ₂₈	1.400/ 1.400	1.443	1.397/ 1.391	1.404	
<i>r</i> ₂₉	1.437/ 1.429	1.429	1.442/1.433	1.430	
<i>r</i> ₃₀	1.871/ 1.861	1.870	1.921/ 1.926	1.907	
<i>r</i> ₃₁	1.871/ 1.864	1.872	1.921/ 1.934	1.930	
<i>r</i> ₃₂	1.493/ 1.489	1.447	1.494/ 1.490	1.486	

Table S1. Calculated bond lengths (Å) in the ground and first excited singlet state of tetrasilatetrathia[8]circulene and tetragermatetrathia[8]circulene molecules

Experimental data (in bold) from Refs.^{22,23} obtained by X-ray analysis. Parameter r denotes the bond in accordance with Figure presented from the right on Table.

Figure S1. The shape of frontier molecular orbitals of the $4S4SiEt_2$ and $4S4GeEt_2$ molecules

Figure S2. The shape of promotive modes in the absorption vibronic spectra of $4S4SiEt_2$ ($4S4GeEt_2$) molecules (top) and their H-substituted $4S4SiH_2$ ($4S4GeH_2$) models (bottom). Numbers are in cm⁻¹. The scaled displacement vectors are absolutely the same for the pairs of $4S4SiEt_2$ ($4S4GeEt_2$) and $4S4SiH_2$ ($4S4GeH_2$) molecules, that is why only Si-containing systems are presented.

Figure S3. The shape of promotive modes in the fluorescence vibronic spectra of 4S4SiEt₂ (4S4GeEt₂) molecules (top) and their H-substituted 4S4SiH₂ (4S4GeH₂) models (bottom). Numbers are in cm⁻¹. The scaled displacement vectors are absolutely the same for the pairs of 4S4SiEt₂ (4S4GeEt₂) and 4S4SiH₂ (4S4GeH₂) molecules, that is why only Si-containing systems are presented.