Supplementary Online material for: Structures, Dipole Moments and Excited State Lifetime of Isolated4-Cyanoindole in its Ground and Lowest Electronically Excited Singlet States.

Marie-Luise Hebestreit,^{*a*}, Michael Schneider,^{*a*}, Hilda Lartian,^{*a*} Vivienne Betz,^{*a*} Michael Heinrich,^{*a*} Mirko Lindic,^{*a*} Myong Yong Choi,^{*b*} and Michael Schmitt^{**a*}

May 21, 2019

^{*a*} Heinrich-Heine-Universität, Institut für Physikalische Chemie I, D-40225 Düsseldorf, Germany, E-mail:mschmitt@hhu.de.

^b Radboud University, Institute for Molecules and Materials,

Felix Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands.

^{*c*} Bruker-Daltonik GmbH, 28359 Bremen, Germany

The supporting online material contains:

- A table, containing the Cartesian coordinates in Bohr of 4-cyanoindole in the S_0 state from SCS-CC2/cc-pVTZ calculations.
- A table, containing the Cartesian coordinates in Bohr of 4-cyanoindole in the S_1 state from SCS-CC2/cc-pVTZ calculations.
- A figure, containing the Duschinsky matrix of the 45 vibrational modes of 3-cyanoindole.
- A figure, containing the Duschinsky matrix of the 45 vibrational modes of 5-cyanoindole.
- A figure, containing an expanded view of the rotationally resolved electronic spectrum of the electronic origin of 4-cyanoindole.
- A figure, containing the rotationally resolved electronic spectrum of the electronic origin of 1-deuterated 4-cyanoindole.
- A figure, containing the rotationally resolved electronic spectrum of the electronic origin of 2-deuterated 4-cyanoindole.
- A figure, containing the rotationally resolved electronic spectrum of the electronic origin of 3-deuterated 4-cyanoindole.
- A figure, containing the frontier orbitals involved in the S₁ and S₂ excitation.
- A figure, containing the electron density difference plots of 3-cyanoindole, 4-cyanoindole, and 5-cyanoindole.

Table S1 SCS CC2/cc	pVTZ calculated c	optimized S ₀ cartesian	coordinates of 4-C	yanoindole (i	in bohr).
---------------------	-------------------	------------------------------------	--------------------	---------------	-----------

=

С	-0.82504608	-3.87198701	0.00034434
С	1.83519861	-3.85210200	0.00033732
С	3.18786743	-1.59899921	0.00019318
С	1.80605976	0.65619474	-0.00012977
Ν	2.61329577	3.12879219	-0.00018408
С	0.53763349	4.71262771	-0.00044918
С	-1.64175633	3.29813955	-0.00038107
С	-0.87663304	0.70490427	-0.00016181
С	-2.19025154	-1.61759864	0.00015035
Η	-1.83187524	-5.65068808	0.00041866
Η	2.84224224	-5.63079393	0.00035979
Η	5.23386112	-1.59957638	0.00043898
Η	0.78397478	6.73375545	-0.00067922
Η	-3.54507475	4.01860007	-0.00044386
Η	4.42491253	3.69671743	-0.00007359
С	-4.90169006	-1.63392783	0.00027832
Ν	-7.12489769	-1.60998934	0.00037865

 $\label{eq:scscc} \mbox{Table S2} \ \mbox{SCS CC2/cc-pVTZ} \ \mbox{calculated optimized } S_1 \ \mbox{cartesian coordinates of 4-Cyanoindole (in bohr)}.$

С	-0.82507474	-3.93152508	0.00032150
С	1.82630119	-3.85560603	0.00037094
С	3.27188112	-1.57150725	0.00024608
С	1.78860280	0.63627276	0.00009284
Ν	2.59454221	3.19379366	-0.00012519
С	0.60392348	4.74034608	-0.00034306
С	-1.63647151	3.20765677	-0.00025661
С	-0.88430930	0.67027110	0.00001317
С	-2.30936200	-1.66335424	0.00012664
Η	-1.76825238	-5.74427165	0.00044258
Η	2.83823761	-5.63468372	0.00052278
Η	5.31217374	-1.56518571	0.00023251
Η	0.80199664	6.76728508	-0.00054173
Η	-3.54348946	3.93109255	-0.00039221
Η	4.41657538	3.75438147	-0.00017546
С	-4.95943730	-1.60199025	-0.00000610
Ν	-7.20001646	-1.44890655	-0.00013166

Figure S1 Duschinsky matrix of the 45 vibrational modes of 3-cyanoindole.

Figure S2 Duschinsky matrix of the 45 vibrational modes of 5-cyanoindole.

Figure S3 Expanded view of the rotationally resolved electronic spectrum of the electronic origin of 4-cyanoindole along with a fit of the line form parameters to determine the fluorescence lifetime.

Figure S4 Rotationally resolved electronic spectrum of the electronic origin of N-deuterated 4-cyanoindole

Figure S5 Rotationally resolved electronic spectrum of the electronic origin of 2-deuterated 4-cyanoindole

Figure S6 Rotationally resolved electronic spectrum of the electronic origin of 3-deuterated 4-cyanoindole

Figure S7 Frontier orbitals involved in the S_1 and S_2 excitation and leading contributions to the excitations.

Figure S8 Electron density difference plots of 3-cyanoindole, 4-cyanoindole, and 5-cyanoindole.