Electronic Supplementary Information (ESI) for: Photodynamics of alternative DNA base isoguanine

Gregory Gate,^{$a\ddagger$} Rafał Szabla,^{* $b,c\ddagger$} Michael Haggmark,^a Jiří Šponer,^c Andrzej L. Sobolewski^b and Mattanjah S. de Vries^{*a}

May 9, 2019

Assignment of key vibrational modes

Table 1 The key (anharmonic) vibrational frequencies in the spectral region tracked in the IR-UV hole burning experiments obtained at the B2PLYP/def2-TZVP level.

Vibration type	Theory (anharmonic) [cm ⁻¹]
keto-N3,7	
symmetric NH ₂ stretching (amino group)	3443
N3H stretching	3463
N7H stretching	3510
symmetric NH ₂ stretching (amino group)	3554
keto-N1,9	
symmetric NH ₂ stretching (amino group)	3438
N1H stretching	3467
N9H stretching	3493
asymmetric NH ₂ stretching (amino group)	3581
keto-N3,9	
symmetric NH ₂ stretching (amino group)	3425
N3H stretching	3455
N9H stretching	3491
asymmetric NH2 stretching (amino group)	3535
keto-N1,7	
symmetric NH ₂ stretching (amino group)	3431
N1H stretching	3442
N7H stretching	3495
asymmetric NH2 stretching (amino group)	3533
enol-N7	
symmetric NH ₂ stretching (amino group)	3439
N7H stretching	3510
asymmetric NH ₂ stretching (amino group)	3542
OH stretching	3631
keto-N9	
symmetric NH ₂ stretching (amino group)	3504
N9H stretching	3507
asymmetric NH ₂ stretching (amino group)	3636
OH stretching	3637

Vertical excitation energy benchmarks

Stat	e / Transition	Eexc/[eV]	f _{osc}	λ/[nm]			
keto-N1,9							
S ₁	$\pi\pi^*$	3.89	0.142	318.7			
S_2	$\pi\sigma_{NH}^{*}$	4.71	$2.23\cdot10^{-3}$	263.2			
S ₃	$n_{ m N}\pi^*$	4.93	$2.27\cdot10^{-4}$	251.5			
S_4	$\pi\sigma_{NH}^{*}$	5.20	$1.78 \cdot 10^{-4}$	238.4			
S ₅	$n_{ m O}\pi^*$	5.24	$3.94 \cdot 10^{-5}$	236.6			
S ₆	$\pi\pi^*$	5.35	0.176	231.7			
keto-N3,7							
S ₁	$\pi\pi^*$	4.22	0.162	293.8			
S_2	$n_{ m O}\pi^*$	4.77	$1.53\cdot10^{-3}$	259.9			
S ₃	$\pi\sigma_{NH}^*$	4.84	$1.16 \cdot 10^{-3}$	256.2			
S_4	$n_{ m N}\pi^{*}$	5.11	$2.42 \cdot 10^{-3}$	242.6			
S ₅	$\pi\pi^*$	5.51	0.145	225.0			
S ₆	$\pi\sigma_{NH}^*$	5.66	$2.80 \cdot 10^{-3}$	219.1			
enol-N7							
S ₁	$\pi\pi^*$	4.57	0.144	271.3			
S_2	$n_{ m N}\pi^{*}$	4.84	$2.94 \cdot 10^{-3}$	256.2			
S_3	$\pi\sigma_{NH}^{*}$	4.97	$5.46 \cdot 10^{-3}$	249.5			
S_4	$\pi\pi^*$	5.62	$6.21 \cdot 10^{-2}$	220.6			
S_5	$n\sigma_{NH}^*$	5.71	$1.52 \cdot 10^{-2}$	217.1			
S ₆	$\pi\sigma_{OH}^*$	5.81	$1.22 \cdot 10^{-3}$	213.4			
enol-N9							
S ₁	$\pi\pi^*$	4.94	0.188	251.0			
S_2	$n_{ m N}\pi^*$	5.35	$2.52\cdot 10^{-3}$	231.7			
S_3	$\pi\sigma_{NH}^*$	5.39	$3.45 \cdot 10^{-3}$	230.0			
S_4	$\pi\pi^*$	5.45	0.113	227.5			
S_5	$\pi\sigma^*_{NH}$	5.73	$7.36 \cdot 10^{-4}$	216.4			
S ₆	$n_{ m N}\pi^*$	6.07	$1.06 \cdot 10^{-3}$	204.3			

Table 2 Vertical excitation energies (in eV) of the four considered tautomers of isoG, computed using the ADC(2)/aug-cc-pVTZ method, assuming the ground-state minimum energy structures optimized at the B3LYP/def2-TZVPP level.

State / Transition		$E_{exc}/[eV]$	f_{osc}	λ/[nm]				
keto-N1,9								
S1	$\pi\pi^*$	3.84	0.138	322.9				
S ₂	$\pi\sigma_{\scriptscriptstyle NH}^*$	4.71	$2.15 \cdot 10^{-3}$	263.2				
S ₃	$n_{ m N}\pi^*$	4.89	$3.26 \cdot 10^{-4}$	253.5				
S_4	$\pi\sigma_{\scriptscriptstyle NH}^*$	5.20	$2.65\cdot10^{-4}$	238.4				
S ₅	$n_0\pi^*$	5.22	$6.39 \cdot 10^{-5}$	237.5				
S ₆	$\pi\pi^*$	5.31	0.181	233.5				
keto-N3,7								
S1	$\pi\pi^*$	4.22	0.169	293.8				
S ₂	$n_{ m O}\pi^{*}$	4.74	$2.05\cdot10^{-3}$	261.6				
S ₃	$\pi\sigma_{\scriptscriptstyle NH}^*$	4.88	$1.23 \cdot 10^{-3}$	254.1				
S_4	$n_{ m N}\pi^*$	5.11	$2.66 \cdot 10^{-3}$	242.6				
S_5	$\pi\pi^*$	5.55	0.104	223.4				
S ₆	$\pi\sigma_{NH}^{*}$	5.66	$3.16 \cdot 10^{-3}$	219.1				
enol-N7								
S1	$\pi\pi^*$	4.56	0.145	275.5				
S ₂	$n_{ m N}\pi^*$	4.86	$2.83 \cdot 10^{-3}$	255.1				
S ₃	$\pi\sigma_{NH}^*$	5.03	$4.98 \cdot 10^{-3}$	246.5				
S_4	$\pi\pi^*$	5.63	$6.38 \cdot 10^{-2}$	220.2				
S ₅	$n\sigma_{NH}^*$	5.79	$1.15 \cdot 10^{-2}$	214.1				
S ₆	$\pi\sigma_{OH}^{*}$	5.81	$5.04 \cdot 10^{-3}$	213.4				
enol-N9								
S ₁	$\pi\pi^*$	4.90	0.188	253.0				
S_2	$n_{ m N}\pi^{*}$	5.36	$2.69 \cdot 10^{-3}$	231.3				
S ₃	$\pi\sigma_{NH}^{*}$	5.41	$4.26 \cdot 10^{-3}$	229.2				
S_4	$\pi\pi^*$	5.45	0.110	227.5				
S ₅	$\pi\sigma_{NH}^{*}$	5.76	$2.10 \cdot 10^{-3}$	215.3				
S ₆	$\pi\sigma^*$	6.11	$1.36 \cdot 10^{-2}$	202.9				
S ₇	$n_{ m N}\pi^{*}$	6.12	$7.79 \cdot 10^{-3}$	202.6				

 Table 3
 Vertical excitation energies (in eV) of the four considered tautomers of isoG, computed using the ADC(2)/aug-cc-pVTZ method, assuming the ground-state minimum energy structures optimized at the MP2/cc-pVTZ level.

Fig. 1 Rescaled experimental data of the right spectrum of figure 2 (IR-UV double resonance spectrum probing at 34340 cm⁻¹). Red trace is burn signal and black is background signal. The peak marked by the triangle is at 3522 cm^{-1} and the peak marked by the star is at 3552 cm^{-1} . The inset displays the same experimental data, with the background signal displayed as well. This result demonstrates that the signal at 3552 cm^{-1} for the *enol*-N7 tautomer is a real peak.

Fig. 2 Adiabatic populations of electronic states extracted from nonadiabatic molecular dynamics simulations performed for the *keto*-N1,9 tautomer. Very fast recovery of the electronic ground state is assigned here to the incorrect description of the topography of the $S_1(n\pi^*)/S_0$ state crossing in this particular tautomer (see the main article for more information).