Supporting Information for

Modulating the electronic structures of blue phosphorene towards spintronics

Xiang-Qian Lu, Chuan-Kui Wang and Xiao-Xiao Fu*

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China

Fig. S1 The relaxed geometrical structures of X@H-APNRs and H-ZPNRs (X=Sc, Ti, V, Cr, Mn, Fe, Co, and Ni).

Fig. S2 The equilibrium transmission spectra of Sc-adsorbed nanoribbons with scattering region containing 3, 4 and 5 units of cell with P spin configuration.

Table S1 The minimum distance between TM atoms and blue phosphorene $D_{\text{M-P}}$ (Å), adsorption energy E_a , $E_a^{(1)}$ and $E_a^{(2)}$ (the unit is eV) of transition metal adatoms on blue phosphorene nanoribbon, black phosphorene nanoribbon, and graphene nanoribbon, and experimental cohesive energies per atom of bulk metals E_c (eV) and the magnetic moments $M(\mu_B)$.

М	Туре	$D_{\mathrm{M-P}}$	$E_{\rm a}$	$E_{a}^{(1)}$	$E_{a}^{(2)}$	E_{c}	М
Sc	Arm.	2.55	-2.43	-3.46		2.00	1.30
	Zig.	2.55	-2.43			-3.90	1.30
Ti	Arm.	2.47	-3.92	-4.16	-1.99	-4.85	1.86
	Zig.	2.50	-3.32				2.23
V	Arm.	2.34	-2.57	-2.86		-5.31	2.80
	Zig.	2.34	-2.41				3.46
Cr	Arm.	2.58	-2.71	-3.05	-0.25	-4.10	4.96
	Zig.	2.57	-2.72				4.95
Mn	Arm.	2.48	-1.67	-2.27	-0.07	2.02	4.77
	Zig.	2.49	-1.66			-2.92	4.79
Fe	Arm.	2.20	-2.95	-4.07	-0.94	1 28	2.71
	Zig.	2.17	-2.95			-4.28	2.52
Со	Arm.	2.18	-4.14	-4.99	-1.08	4 20	1.20
	Zig.	2.18	-4.12			-4.39	1.20
Ni	Arm.	2.17	-4.60	-5.33		1 11	0
	Zig.	2.17	-4.60			-4.44	0

Table S2 The adsorption sites, adsorption energy E_a and separation distance d_{Co-Co} involved in the grwoth pattern.

Co@H-APNR	Sites	$E_{\rm a}({\rm eV})$	d _{Co-Co} (A)
)	H1+H4	-4.10	4.86
	H2+H4	-4.59	2.41
	H3+H4	-4.58	2.47
	H4+H4	-4.19	5.65
	H3+H3+H4 (tetrahedron)	-4.91	2.41
$\rightarrow \checkmark$	H3+H3+H4+H4	-5.10	2.42

Fig. S3 Transmission spectra of Sc@H-ZPNR with P configuration at ± 0.1 V and ± 0.2 V.