Predicting dielectric constants of pure liquids: fragment-based Kirkwood-Fröhlich model applicable over a wide range of polarity

Supplementary Information
Rémi Bouteloup and Didier Mathieu*
CEA, DAM, Le Ripault, 37260 Monts, France
Email: didier.mathieu@cea.fr
March 11, 2019

Table S1. Details of the database used to fit and validate the model, along with present predictions for molar volume $\left(V_{m}\right)$, refraction index $\left(n_{D}\right)$, orientational dipolar parameter $\left(g \mu^{2}\right)$ and dielectric constant $\left(\varepsilon_{r}\right)$. Cf Excel file in Supplementary information to the article.

Figure S1. Further examples of decomposition of molecules into polar fragments, with associated SMARTS codes. In contrast to Figure 7, only real molecules are shown here.

Molecules with benzoate fragment [COC(=O)c1ccccc1]			
Ethyl benzoate	Methyl 4-methylbenzoate	Dodecyl benzoate	Benzyl benzoate

Molecules with cyclic ether fragment [COC]				
Tetrahydropyran	cis-2,5- Dimethyltetrahydrofuran	Eucalyptol	Oxirane	

Molecules with cyclic and aliphatic carbonate [COC(=O)OC] fragments and with chlorocarbonate [COC $(=\mathrm{O}) \mathrm{Cl}]$ fragments

| 2,3-butylene |
| :---: | :---: | :---: | :---: |
| carbonate |\quad| Ethyl methyl |
| :---: |
| carbonate |\quad| Isobutyl |
| :---: |
| chlorocarbonate |\quad| 3-Methyl-1-butyl
 chlorocarbonate |
| :---: |

Molecules with more than one polar fragment

Monomethyl adipate

- One chlorine fragment [C-Cl]
- One bromine fragment [C-Br]
- One ether fragment $[\mathrm{COC}(\mathrm{C})=\mathrm{O}]$ One carboxylic fragment [CC(=O)O]

One chlorine fragment [C-CI]

- Two nitrate fragments $-\mathrm{O}-\mathrm{NO}_{2}$ $[\mathrm{CO}[\mathrm{N}+](=\mathrm{O})[\mathrm{O}-]]$

Clonitrate

- One hydroxyl fragment [C-OH]
- One primary amine fragment [C-NH2]

1,2,3-Propanetriol-1,3-distearate
One hydroxyl fragment [C-OH] Two ether fragment [COC(C)=O]
Glucoheptitol

Table S2. Values (in D^{2}) of the transferable additive fragment contributions $\left(g \mu_{i}^{0}\right)^{2}$ to the molecular orientational dipolar parameter $g \mu^{2}$. TR and TE refer respectively to the number of compounds that exhibit the corresponding fragment in the training and test sets. In addition, "R" denotes sp3 carbon atoms, and "size" indicates that the parameter does not depend on the size of the associated ring.

Polar fragment	$g \mu^{2}$	TR	TE	Polar fragment	$g \mu^{2}$	TR	TE	Polar fragment	$g \mu^{2}$	TR	TE
 Pyrazine	0.28	3	0	 Pyridine	4.84	6	3		4.10	3	2
 Pyridine-1-oxide	17.91	3	1		0.52	3	4	 Silane	0.12	3	0
	1.31	5	2	 Dioxysilane	1.78	4	2		2.51	5	2
	2.74	3	3	 Phosphonate	8.64	10	7		12.74	4	0
	15.31	3	1	 Carbamate	7.68	3	0	 Fluorobenzene	2.08	4	1
 Chlorobenzene	2.19	4	4	 Bromobenzene	1.91	4	3	 Nitrobenzene	15.14	4	1
	12.68	5	3		8.90	3	1		5.61	5	3

	8.04	3	2	$\begin{aligned} & \mathrm{R}_{1} / \mathrm{NH}_{2} \\ & \text { Amine } \end{aligned}$	1.90	15	7		1.10	4	3
 Aniline	2.26	4	2	 N -Aniline	2.69	3	0		0.49	4	1
 Ether	1.74	9	5		1.99	4	1		1.43	5	4
Ether (ring)	3.13	3	3		8.27	8	4	 Aldehyde	7.09	5	1
	9.44	12	11		12.28	3	1	 Carboxylic acid	0.78	22	13
	2.33	12	4		12.13	12	5		2.55	4	0
	0.89	3	0		36.41	3	3		1.92	3	0
	19.04	3	2		22.02	5	10	 Sulfoxide	24.50	4	4
	29.59	8	6	 Sulfolane	22.57	3	0	 Phenyl sulfone	30.15	3	0
 Formate	3.51	5	4	 Carboxylate	2.95	77	27		20.28	4	0
	3.33	9	5	 Phenyl carboxylate	2.35	5	4		3.25	3	0
 Phosphine-oxide	37.49	4	2	 Phosphine sulfide	42.81	4	4		3.71	6	3
	50.82	4	3	 Oxazolidine-2-one	31.24	3	0		41.89	4	0
 Chloroformate	5.82	3	1	 Trichloroacetate	5.59	3	2		7.14	3	0
 Bromocarboxylate	5.94	3	1		6.61	3	3	 Salicylate	4.43	5	0
	3.49	12	2	 Alcohol	9.19	6	104				

Table S3. Values of the linear parameters A and B (in D^{2}) required to evaluate $\left(g \mu_{i}\right)^{2}$ from equation (6), taking into account the number of hydrogen atoms on an adjacent carbon atom in a position. Like for Table S2, TR and TE refer respectively to the number of compounds that exhibit the corresponding fragment in the training and test sets.

Table S4. Values of the interaction parameters T_{i} (dimensionless) needed to evaluate $\left(g \mu_{i}\right)^{2}$ from equation (5) in cases where δ_{i} is non-zero and must be calculated using equation (7). TR refers to the number of compounds that exhibit the corresponding fragment in the training and set.

Polar fragment	Ti	TR	Polar fragment	Ti	TR	Polar fragment	Ti	TR
	0.41	2		-0.41	3		-0.05	5
 Chlore	-0.50	12		-0.73	19	 Ether	-0.10	2
 Ketone*	-0.12	3		1.59	2	 Carboxylate	-0.22	20
	0.03	7	 Alcohol	-0.35	17			

