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I. MODEL AND PARAMETER

A. Model

In our work, a bead-spring model is adapted for polymer chain structure maintenance

of both the probed chain and polymeric crowders. The connection between beads is im-

plemented by an finite extensible nonlinear elastic (FENE) interaction, which stipulates a

restricted maximum bond length between consecutive beads. Such a restricted maximum

bond length enables us to avoid occasional intersections between chain bodies. This inter-

section implies an unphysical picture in the current non-chemical reaction simulation, i.e.

the chemical bond can be broken and crossed by other molecules and then form again. To be

specific, in our model system, there exist basically three types of interaction functions of en-

ergy, including non-bond interaction Unon−bond between arbitrary pair of sites (HS crowders,

polymer crowder beads, probed chain beads), bond-connection interaction Ubond−connection

between consecutive beads of both crowding and probed chains, and the bond-angle inter-

action Ubond−angle for particularly rod-like polymer crowders.

We assume the non-bond interaction energy Unon−bond between sites i and j follows the

Weeks-Chandler-Anderson (WCA) potential in form of:

Unon−bond =
∑
i,j

εij

[(
σij
rij

)12

−
(
σij
rij

)6

+
1

4

]
S.1

where εij is the interaction strength, and σij = (σi +σj)/2. rij denotes the distance between

the pair of sites. The energy is truncated at rij = 21/6σij.

The bond-connection interaction energy Ubond−connection between consecutive beads m

and n is prescribed to be the finite extensible nonlinear elastic (FENE) potential given by

Ubond−connection =
∑
m,n

−
κr2f
2

ln

[
1−

(
rmn
rf

)2
]
, rmn < rf S.2

where κ is the connection strength and rf denotes the maximum bond length.

In addition, for rod-like polymer, the bond-angle interaction energy Ubond−angle follows:

Ubond−angle =
∑
angle

kangle(θangle − π)2 S.3

where θangle refers to the bond angle between two consecutive bonds on the rod-like polymer

chain. kangle is the interaction strength.
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B. Parameter

kBT is set to the energy unit with kB being the Boltzmann constant and T the system

temperature. In our simulation, we fixed the probed chain length equal to 100. Denoting

the probed chain site as p, crowder site as c, the non-bond interaction strength εij = 4kBT

for all c-c site pairs as well as all p-p site pairs, while εij = 10kBT for all p-c site pairs. For

bond-interaction, κ = 30kBT/σ
2 and rf = 1.5σi where i = p, c. For simplicity, the probed

chain bead mass mp and diameter σp are chosen as the mass and length units, m and σ

respectively. Then, time is scaled by τ =
√
mσ2/kBT .

The entire system is enclosed in a periodic boundary cube box of a large volume, with

its side length l = 40σ. A Langevin thermostat is employed to maintain temperature with a

friction coefficient along with a corresponding random force exerted on arbitrary sites. The

friction coefficient ζp exerted on the beads of probed chain is set to be 0.1mτ−1. According

to the relation of Stokes-Einstein where friction coefficient is proportional to size, the friction

coefficient ζc exerted on crowder sites c is then determined through ζc = ζp
σc
σp

. The simulation

integration time step ∆τ = 0.001τ . After initial equilibration for 103τ of simulated system,

simulation is then run for ∼ 108 time steps (∼ 105τ) and data is obtained every 2500 steps.

The entire simulation is repeated 20−30 times with different random choices of initial system

conformations for a smooth statistics of results.

II. FINITE SIZE EFFECT CHECK

Before the simulation , we have to ensure that the simulation box is large enough

to make the finite size effects negligible. To this aim, we run simulations for the probed

chain with enlarged box side length l/σ, ranging from 40 (which has been adopted in the

manuscript) to 60. We consider the three types of crowding system with the specific choice

of parameters: for hard sphere crowders, the diameter is σc = 401/3, for flexible and rod-like

crowders, the chain length is N = 40. The volume fraction is identical to be φ = 0.18. We

evaluate the gyration radius Rg of the probed chain as a function of simulation box side

length. Results are plotted in Fig. S 1 below. It is clear that Rg remains nearly unchanged

with increasing l, which demonstrates that the finite size effect in our simulation has been

safely avoided.

III. EVIDENCE OF EQUILIBRATION

Because the crowder discussed in our work involves a rod-like type, which could possibly

introduce long-range as well as long-time correlation of configurations of the simulation sys-
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Fig. S 1: Gyration radius of the probed chain Rg under compaction of three types of

crowders as a function of simulation box length l, at φ = 0.18.

tem, care must be taken to ensure that the system is well equilibrated before data recording.

To provide explicit evidence that our results are obtained from full equilibration, we resort

to intermediate dynamic scattering function F of the probed chain, which gives the density-

density correlation in Fourier space at wave vector q that enables us to inspect whether the

simulated system relaxes from an initial configuration. This scattering function F can be

evaluated according to

F (q, t) =
1

N
〈ρ−q(t′)ρq(t′ + t)〉 =

1

N

∑
i,j

〈e−iq·ri(t′)eiq·rj(t′+t)〉t′ S.4

where ri(t) denotes the position of probed chain site i at time t. ρq(t′) =
∑
i

∫
dreiq·rδ(r −

ri(t)) =
∑
i

eiq·ri(t) is the number density of sites in Fourier space, which gives the holo-

information of position configuration of the probed chain. Note that on the one hand

computational cost of F (q, t) is terrifically huge even for a specific q; on the other

hand, the existence of anisotropy is not negligible. Here we chose three typical q =

(2π/R0
g, 0, 0), (0, 2π/R0

g, 0), (0, 0, 2π/R0
g) as a trade off, where R0

g = 7.32σ is the gyration

radius of chain in absence of crowders. We chose 2π/R0
g as the norm of q in order to inspect

the relaxation of probe chain configuration on the scale of the chain size. The results of nor-

malized modulus of intermediate dynamic scattering function |F (q, t)| / |F (q, 0)| are shown

in Fig. S 2. The results show the configuration of probed chain in the rod-like crowding

environment is approximately relaxed within a time scale of ∼ 103τ , which is nearly two

orders of magnitude less than the time length of trajectories used to sample data, thus

ensuring that the sampling under in our work gives converged results.
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Fig. S 2: Normalized modulus of intermediate dynamic scattering function

|F (q, t)| / |F (q, 0)| in rod-like crowder system for q = (2π/R0
g, 0, 0) (a), q = (0, 2π/R0

g, 0)

(b), q = (0, 0, 2π/R0
g) (c) with varied crowder chain length N at volume fraction φ = 0.18.

IV. SHAPE PARAMETERS

To investigate the shape of the probed chain conformation, shape parameters S are

introduced. S is rotationally invariant in space and defined base on the inertia tensor T,

the component of which is defined as:

Tαβ =
1

2N2
p

Np∑
i,j=1

(riα − rjα)(riβ − rjβ) S.5

where Np is the number of beads on the probed chain. riα is the αth component of the

position of bead i, α, β = x, y, z. Denoting the eigenvalues of tensor T by ek (k = 1, 2, 3)
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and e =

(
3∑

k=1

ek

)
/3, we have the required S:

S = 27

[
3∏

k=1

(ek − e)
]

(3e)3
S.6
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