## **Supplementary Information**

Organic salts utilising the hexamethylguanidinium cation: the influence of the anion on the structural, physical and thermal properties.

Ruhamah Yunis,<sup>a</sup> Anthony Hollenkamp<sup>b</sup>, Craig Forsyth<sup>c</sup>, Cara M. Doherty<sup>d,</sup> Danah Al-Masri,<sup>a</sup> and Jennifer M. Pringle<sup>a</sup>

<sup>a</sup>Institute for Frontier Materials, Deakin University, Melbourne, Victoria 3125, Australia. Email: jenny.pringle@deakin.edu.au

<sup>b</sup>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Energy, Clayton, 3168, VIC, Australia.

<sup>c</sup> School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia

<sup>d</sup>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, 3168, VIC, Australia.





Figure S1; <sup>1</sup>H NMR for Hexamethylguanidinium chloride, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C]Cl, [HMG][Cl]



Figure S2; <sup>13</sup>C NMR for Hexamethylguanidinium chloride, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C]Cl, [HMG][Cl]



Figure S3; <sup>1</sup>H NMR for Hexamethylguanidinium trifluoromethanesulfonyl(fluorosulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][FTFSI], [HMG][FTFSI]



Figure S4; <sup>13</sup>C NMR for Hexamethylguanidinium trifluoromethanesulfonyl(fluorosulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][FTFSI], [HMG][FTFSI]



Figure S5; <sup>19</sup>F NMR for Hexamethylguanidinium trifluoromethanesulfonyl(fluorosulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][FTFSI], [HMG][FTFSI]



Figure S6; <sup>1</sup>H NMR for Hexamethylguanidinium bis(trifluoromethanesulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][TFSI], [HMG][TFSI]



Figure S7; <sup>13</sup>C NMR for Hexamethylguanidinium bis(trifluoromethanesulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][TFSI], [HMG][TFSI]



Figure S8; <sup>19</sup>F NMR for Hexamethylguanidinium bis(trifluoromethanesulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][TFSI], [HMG][TFSI]



Figure S9; <sup>1</sup>H NMR for Hexamethylguanidinium bis(fluorosulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][FSI], [HMG][FSI]



Figure S10; <sup>13</sup>C NMR for Hexamethylguanidinium bis(fluorosulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][FSI], [HMG][FSI]



Figure S11; <sup>19</sup>F NMR for Hexamethylguanidinium bis(fluorosulfonyl)imide, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][FSI], [HMG][FSI]



 $[((CH_3)_2N)_3C][PF_6], [HMG][PF_6]$ 



Figure S13; <sup>13</sup>C NMR for Hexamethylguanidinium hexafluorophosphate, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][PF<sub>6</sub>], [HMG][PF<sub>6</sub>]



Figure S14; <sup>19</sup>F NMR for Hexamethylguanidinium hexafluorophosphate, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][PF<sub>6</sub>], [HMG][PF<sub>6</sub>]



Figure S15; <sup>1</sup>H NMR for Hexamethylguanidinium tetrafluoroborate, [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][BF<sub>4</sub>], [HMG][BF<sub>4</sub>]



[((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][BF<sub>4</sub>], [HMG][BF<sub>4</sub>]





<sup>19</sup>F Hexamethylguanidinium tetrafluoroborate, Figure **S17;** NMR for [((CH<sub>3</sub>)<sub>2</sub>N)<sub>3</sub>C][BF<sub>4</sub>], [HMG][BF<sub>4</sub>]

## **Powder X-ray diffraction.**

Room temperature PXRD of [HMG][PF<sub>6</sub>], [HMG][TFSI] and [HMG][BF<sub>4</sub>].







HMG TFSI (Coupled TwoTheta/Theta)

Figure S19; Experimental (black) and calculated (red) PXRD for [HMG][TFSI].



Figure S20; Experimental (black) and calculated (red) PXRD for [HMG][BF<sub>4</sub>].



**PALS Data** 

Figure S21. Fitted Positron Annihilation Lifetime spectra of [HMG][FTFSI] using LT-9 software.



Figure S22. Fitted Positron Annihilation Lifetime spectra of [HMG][TFSI] using LT-9 software.

## [HMG][FSI]



Figure S23. Fitted Positron Annihilation Lifetime spectra of [HMG][FSI] using LT-9 software.



Figure S24. Fitted Positron Annihilation Lifetime spectra of [HMG][PF6] using LT-9 software.



Figure S25. Fitted Positron Annihilation Lifetime spectra of [C<sub>2</sub>mpyr][FSI] using LT-9 software.



Figure S26. Fitted Positron Annihilation Lifetime spectra of [C<sub>2</sub>epyr][FSI] using LT-9 software.

|                            | Lifetimes           | Intensities        | Lifetimes           | Intensities        | Lifetimes           | Intensities        |
|----------------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|
|                            | τ <sub>1</sub> (ns) | I <sub>1</sub> (%) | τ <sub>2</sub> (ns) | I <sub>2</sub> (%) | τ <sub>3</sub> (ns) | I <sub>3</sub> (%) |
| [HMG][FTFSI]               | 0.125               | 91.2 ± 1.8         | 0.365 ± 0.004       | 57.4 ± 1.6         | 1.806 ± 0.01        | 23.3 ± 0.2         |
| [HMG][TFSI]                | 0.125               | 22.4 ± 0.8         | 0.371 ± 0.004       | 46.7 ± 0.6         | 1.564 ± 0.01        | 31.0 ± 0.3         |
| [HMG][FSI]                 | 0.125               | 24.3 ± 0.5         | 0.359 ± 0.006       | 41.8 ± 0.4         | 1.581 ± 0.012       | 34.0 ± 0.3         |
| [HMG][PF <sub>6</sub> ]    | 0.125               | 21.7 ± 0.8         | 0.433 ± 0.004       | 47.1 ± 0.8         | 1.592 ± 0.01        | 31.1 ± 0.1         |
| [C <sub>2</sub> mpyr][FSI] | 0.125               | 13.0 ± 1.2         | 0.384 ± 0.003       | 75.8 ± 1.2         | 1.921 ± 0.013       | 11.2 ± 0.1         |
| [C <sub>2</sub> epyr][FSI] | 0.125               | 11.6 ± 1.1         | 0.376 ± 0.001       | 76.4 ± 1.1         | 1.956 ± 0.019       | 12.0 ± 0.1         |

Table S1. Summary of fitted PALS Data