Supporting Information for

How does the mutation in the cap domain of methylcobalamindependent methionine synthase influence the photoactivation of the Co-C bond?

Arghya Pratim Ghosh, Abdullah Al Mamun, Pawel M. Kozlowski*

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292,

United States

*Phone: (502) 852-6609. Fax: (502) 852-8149. E-mail: pawel@louisville.edu

Contents

Table S1: Selected geometrical parameters for both the WT-MetH and F708A-MetH

Figure S1: Crystal structure of MetH obtained from the protein data bank (PDB ID:1BMT)

Figure S2: QM layer used for calculation of WT-MetH and F708A-MetH

Figure S3: Electron density differences between S_0 and S_1 states for the WT-MetH and F708A-MetH at $S_{(1min)}$ MLCT point.

Figure S4: Corresponding ground state optimized geometries of WT-MetH and F708A-MetH with various axial bond lengths of selected points on the S_1 PES (Figure 5a), (a) I (S_{1min}) (b) IIB (MECP) (c) IIIB (S_{1min}). QM region shown using the ball-and-stick model and MM region shown in ribbons

Figure S5: Relative energetics of the MLCT and LF state for (a) WT -Methionine Synthase (b) F708A -Methionine Synthase (c) Im–[Co^{III}(corrin)]–Me⁺

Figure S6: The changes of N_{Im} -Co-C bond angles along the Co-C bond length elongation for WT-MetH.

Figure S7: The changes of N_{Im} -Co-C bond angles along the Co-C bond length elongation for F708A-MetH.

	Crystal structure	WT- MetH			F708A-MetH		
		Optimized Structure	I (S _{0min})	I (S _{1min})	Optimized Structure	I (S _{0min})	I (S _{1min})
Bond Distances (Å)							
Co-C	1.957	1.999	2.000	2.000	1.976	2.000	2.000
Co-N _{Im}	2.241	2.296	2.300	2.100	2.164	2.300	2.100
$Co-N_{21}$	1.925	1.895	1.895	1.903	1.894	1.893	1.901
Co-N 22	2.015	1.949	1.949	1.957	1.955	1.954	1.960
Co-N 23	2.016	1.941	1.941	1.947	1.947	1.946	1.954
Co-N 24	1.914	1.886	1.886	1.892	1.889	1.888	1.893
Bond Angles (°)							
C-Co-N _{Im}	167.4	169.7	169.6	170.7	170.3	170.1	171.1
N_{21} -Co- N_{23}	172.9	173.8	173.8	173.6	173.9	174.0	173.5
N ₂₂ -Co-N ₂₄	177.8	172.1	172.2	170.8	172.4	172.6	171.4
Torsion Angles (°)							
N21-N22-N23-N24	4.8	-3.4	-3.4	-3.4	-1.9	-1.8	-2.2
N ₂₁ -N ₂₂ -N ₂₃ -Co	4.9	0.002	-0.1	1.3	0.7	0.5	1.6

Table S1: Selected geometrical parameters for both the WT-MetH and F708A-MetH

Figure S1: a) Crystal structure of MetH obtained from the protein data bank (PDB ID:1BMT). The structure contains two independent chains in one asymmetric unit. The cofactor is depicted by the surface and the orange color. **b)** Structure of one chain unit which is used for the calculations.

Figure S2: Active site figures treated with QM level of theory in the QM/MM calculations (a) WT-MetH and (b) F708A-MetH

Figure S3: Plot of electron density differences between S_0 and S_1 states for (a) WT-MetH (b) F708A-MetH at $S_{(1min)}$ MLCT point. Results obtained from TD-DFT calculations. Isosurface plot value 0.002 was used.

Figure S4: Corresponding ground state optimized geometries of WT-MetH and F708A-MetH with various axial bond lengths of selected points on the S_1 PESs (Figure 5a), (a) I (S_{1min}) (b) IIB (MECP) (c) IIIB (S_{1min}). QM region shown using the ball and stick model and MM region shown in ribbons.

Im-[Co^{III}(corrin)]-Me⁺ of isolated MeCbl cofactor in solution

Figure S6: The changes of N_{Im} -Co-C bond angles along the Co-C bond length elongation for WT-MetH. (a) QM/MM calculations were performed to elongate the Co-C bond length from 2.00 A to 2.60 A with a step size of 0.1 A. At each point the bond angle of N_{Im} -Co-C were determined and plotted as a function of Co-C bond length to show the escape of the CH₃ radical pair along the designated line. (b) Molecular dynamics (MD) simulation were performed to construct the one-dimensional plot of N_{Im} -Co-C vs Co-C bond length. The equilibrium structure from QM/MM optimization was used to prepare the model for the MD simulation. Harmonic restraints were employed during MD simulation. The Co-C bond length were constraint from 2.0 Å to 2.6 Å with a step size of 0.1 Å. Each constrained distance was minimized, equilibrated and sampled for 10 ps. The corresponding structures were then scrutinized, and the N_{Im} -Co-C bond lengths were determined and plotted as a function of the Co-C bond length. This has been done to compare the results and the structure with the QM/MM optimization. In both cases similar pattern was observed.

Figure S7: The changes of N_{Im} -Co-C bond angles along the Co-C bond length elongation for F708A-MetH. (a) QM/MM calculations were performed to elongate the Co-C bond length from 2.00 A to 2.60 A with a step size of 0.1 A. (b) MD simulation were performed to construct the one-dimensional plot of N_{Im} -Co-C vs Co-C bond length.

References:

1) C. L. Drennan, S. Huang, J. T. Drummond, R. G. Matthews and M. L. Lidwig, Science, 1994, 266, 1669-1674