Supporting Information

Effect of Bovine Serum Albumin on Tartrate Modified Manganese Ferrite Nano Hollow Spheres: Spectroscopic and Toxicity Study

Indranil Chakraborty,^{*a} Urmila Saha,^b Dipika Mandal,^a Suprabhat Mukherjee,^c Nikhilesh Joardar,^d Santi P. Sinha Babu,^d Gopinatha Suresh Kumar,^b and Kalyan Mandal^a

^aDepartment of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India ^bBiophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India ^cDepartment of Animal Science, Kazi Nazrul University, Asansol-713 340, India ^dDepartment of Zoology, Visva-Bharati University, Santiniketan-731 235, India

Figure S1. The comparative fluorescence intensity of BSA in presence of $T-MnFe_2O_4$ NHSs, H_2O and tartrate. Error bars are calculated from the standard deviation of 3 successive measurements for each case.

Continuous variation analysis (Job's plot)

Continuous variation analysis was done at 298.15 K (λ_{ex} = 329 nm). The fluorescence signal was recorded for solutions where the concentrations of both the BSA and the T-MnFe₂O₄ NHSs were varied while the sum of their concentrations was kept constant. The difference in fluorescence intensity (Δ F) of T-MnFe₂O₄ NHSs in the absence and presence of BSA was plotted as a function of the input mole fraction. Break point in the resulting plot corresponds to the mole fraction of the bound T-MnFe₂O₄ in the complex. The stoichiometry was obtained from [(1 – χ)/ χ], where, χ denotes the mole fraction of T-MnFe₂O₄ NHSs. The results presented are average of at least three experiments.

Figure S2. Job's plot depicting change in fluorescence intensity versus mole fraction of T-MnFe₂O₄ NHSs.

Table S2. The α -helical content (:	:3%) of BSA	for three successive me	easurements in different	concentration of T-MnFe ₂ O ₄ NHSs
---	-------------	-------------------------	--------------------------	--

Conc. of T-MnFe ₂ O ₄	% of α-helix
NHSs (μg/ml)	
0	56.1
0.024	49.3
0.032	45.2
0.040	44.8
0.048	41.9

Figure S3. Analysis of the haematological parameters in T-MnFe₂O₄ NHSs treated rat. Changes in (a) W.B.C. count, (b) %W.B.C, and (c) Haemoglobin in rat blood treated with T-MnFe₂O₄ NHSs.

Figure S4. Antibacterial and antifungal activities of T-MnFe₂O₄ NHSs *in vitro*.