## **Supplementary Materials**

Toward a new type of proton conductors based on imidazole and aromatic acids

Sylwia Zięba, Alina T. Dubis, Andrzej K. Gzella, Paweł Ławniczak, Katarzyna Pogorzelec-Glaser, Andrzej Łapiński



Figure S1. Part of the molecular packing of 1 in two views, showing the hydrogen-bonded (a) chain of molecules growing parallel to the b axis, (b,c) sheet of molecules parallel to the (-101) plane. The symmetry codes are explained in Table 1S.

| D—H···A                        | <i>D</i> —Н | H···A     | $D \cdots A$ | D—H··· $A$ |
|--------------------------------|-------------|-----------|--------------|------------|
| N1a—H1ab…O9b                   | 0.94(2)     | 1.67(2)   | 2.6033(14)   | 168.4(16)  |
| N2a—H2a…O8b <sup>i</sup>       | 0.922(18)   | 1.730(18) | 2.6495(14)   | 174.6(18)  |
| C1a—H1aa…O9b <sup>ii</sup>     | 0.95        | 2.38      | 3.2032(17)   | 145        |
| C2a—H2aa…π(Ph <sup>iii</sup> ) | 0.95        | 2.66      | 3.5531(16)   | 156        |
|                                |             |           |              |            |

Table S1. The geometrical parameters of D-H…A interactions for salt 1 (Å, °).

Symmetry codes: (i) 1/2-x, 1/2+y, 1/2-z; (ii) -1/2+x, 3/2-y, -1/2+z; (iii) 1/2+x, 3/2-y, -1/2+z



**Figure S2.** Two views of the unit cell of 2 showing the hydrogen-bonded sheet of molecules parallel to the *ab* plane. The symmetry codes are explained in **Table 2S**.

| D—H···A                       | D—H         | H···A          | $D \cdots A$ | D—H···A |
|-------------------------------|-------------|----------------|--------------|---------|
| O10b—H10b…O9b                 | 0.96(2)     | 1.62(2)        | 2.5285(14)   | 156(2)  |
| N1a—H1a…O9b                   | 0.93(2)     | 1.77(2)        | 2.6950(15)   | 173(2)  |
| N2a—H2a…O8b <sup>i</sup>      | 0.93(2)     | 1.77(2)        | 2.6798(15)   | 166(2)  |
| C3a—H3aa··O10b <sup>ii</sup>  | 0.95        | 2.42           | 3.2537(18)   | 147     |
| C3a—H3aa…πPh <sup>iii</sup> ) | 0.95        | 2.69           | 3.5777(16)   | 156     |
|                               | 1/0 . 0/0 1 | (11) 1/0 + 1/0 | 1 () 1/0     | 1 1/0   |

Table S2. The geometrical parameters of D-H···A interactions for salt 2 (Å, °).

Symmetry codes: (i) -1/2+x,3/2-y,1-z; (ii) -1/2+x,1/2-y,1-z; (iii) 1/2-x,1-y,1/2+z



**Figure S3.** Intermolecular contacts: C2a-H2aa... $\pi$ (Ph<sup>iii</sup>) (a) and  $\pi$ (Im)··· $\pi$ (Im<sup>iv</sup>) (b); symmetry codes (iii) 1/2+x, 3/2-y, -1/2+z; (iv) 1-x,2-y,1-z; Ph and Im = phenyl and imidazolium rings.



**Figure S4.** Intermolecular contacts of type C-H... $\pi$ (Ph) (a) and of type $\pi$ ··· $\pi$  (b).

|          |           | Benzoic S-14 1 |        |          | Salicylic | G - 14 <b>2</b> |
|----------|-----------|----------------|--------|----------|-----------|-----------------|
|          | Imidazole | acid           | Salt I |          | acid      | San 2           |
|          |           |                |        | C3b (d)  | 6.95      | 6.78            |
| C2a, C3a | 7.02      |                | 7.09   | C2a, C3a |           | 7.55            |
| C3b, C5b |           | 7.49           | 7.47   | C4b (t)  | 7.51      | 7.85            |
| C4b      |           | 7.61           | 7.81   | C5b (t)  | 6.93      | 6.76            |
| C1a      | 7.66      |                | 7.58   |          |           | 8.82            |
| C2b, C6b |           | 7.95           | 7.95   | C6b (d)  | 7.79      | 7.30            |
| N1a, N2a | 12.1      |                | 10.98  |          |           | 14.01           |
| СООН     |           | 12.95          |        | СООН     | 13.30     | 14.01           |
|          |           |                |        | ОН       | 11.46     |                 |
|          |           |                |        | C3b      | 117.11    | 116.37          |
|          |           |                |        | C5b      | 119.20    | 117.66          |
|          |           |                |        | C1b      | 112.92    | 118.16          |
| C2a, C3a | 135.2     |                | 135.18 | C2a, C3a |           | 134.62          |
| C3b, C5b |           | 128.58         | 128.50 | C6b      | 130.29    | 130.39          |
| C2b, C6b |           | 129.29         | 129.3  |          |           |                 |
| C4b      |           | 132.87         | 132.57 |          |           |                 |
| C1b      |           | 130.79         | 131.6  |          |           |                 |
| C1a      | 121.8     |                | 121.52 |          |           | 119.88          |
|          |           |                |        | C4b      | 135.68    | 133.06          |
| C7b      |           | 167.35         | 167.76 | C2b      | 161.17    | 161.90          |
|          |           |                |        | C7b      | 171.97    | 173.50          |
|          |           |                |        |          |           |                 |

**Table S3.** NMR data interpretation. Note: The numbering of carbon and nitrogen atoms ofimidazole and acids molecules are given in Figure S5.



Figure S5. <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) solution (DMSO-d6) spectra of salt 1 and 2.

|              | Salt 1 | Salt 2 |
|--------------|--------|--------|
| Bond Lengths |        |        |
| N1C1         | 1.325  | 1.323  |
| N2-C1        | 1.327  | 1.327  |
| N1–C3        | 1.368  | 1.366  |
| N2-C2        | 1.366  | 1.361  |
| C2–C3        | 1.349  | 1.340  |
| Bond Angles  |        |        |
| N1-C1-N2     | 108.9  | 108.4  |
| C1-N1-C3     | 108.1  | 108.6  |
| C1-N2-C2     | 108.6  | 108.5  |
| N1-C3-C2     | 107.6  | 107.1  |
| N2-C2-C3     | 106.8  | 107.4  |

 Table S4. The geometrical parameters: bond length [Å] and bond angles [°] of imidazolium ion of salt 1 and 2.

<sup>b</sup>Angles and bond lengths are defined in Fig. 1.



**Figure S6**. Close contact of imidazolium benzoate salt (1), imidazolium salicylate (2); Hirshfeld surface calculated for imidazole molecules (a) and acid molecules (b). The notation A-B refers to the interaction between A atoms inside the Hirshfeld surface and B atoms outside.



**Figure S7.** Molecular graphs (QTAIM) of salt 1 (a) and salt 2 (b) bound through hydrogen bonds. Green circles correspond to bond critical points (BCP).

| D–H…A | $d_{H \cdots A}$ | <d-h…a< td=""><td><math>D_{D-H}</math></td><td><math>D_{D \cdots A}</math></td><td rowspan="2">ρ<sub>BCP</sub> [a.u.]</td><td><math>\Delta \rho_{\rm BCP}</math></td><td>G<sub>BCP</sub></td><td><math>V_{BCP}</math></td><td rowspan="2">H<sub>BCP</sub> [a.u.]</td></d-h…a<> | $D_{D-H}$ | $D_{D \cdots A}$ | ρ <sub>BCP</sub> [a.u.] | $\Delta \rho_{\rm BCP}$ | G <sub>BCP</sub> | $V_{BCP}$ | H <sub>BCP</sub> [a.u.] |          |
|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------------------------|-------------------------|------------------|-----------|-------------------------|----------|
|       | [Å]              | [°]                                                                                                                                                                                                                                                                            | [Å]       | [Å]              |                         | [a.u.]                  | [a.u.]           | [a.u.]    |                         |          |
| 1     | C6b–H…N1c        | 2.802                                                                                                                                                                                                                                                                          | 131.9     | 0.950            | 3.509                   | 0.0057                  | 0.0220           | 0.0044    | -0.0033                 | 0.00111  |
|       | N1c–H…O9b        | 1.729                                                                                                                                                                                                                                                                          | 174.6     | 0.922            | 2.649                   | 0.0333                  | 0.2121           | 0.0527    | -0.0524                 | 0.00033  |
|       | C1d–H…O8b        | 2.380                                                                                                                                                                                                                                                                          | 144.7     | 0.950            | 3.203                   | 0.0096                  | 0.0447           | 0.0102    | -0.0091                 | 0.00102  |
|       | N1a–H…O8b        | 1.671                                                                                                                                                                                                                                                                          | 168.4     | 0.944            | 2.603                   | 0.0378                  | 0.2564           | 0.0638    | -0.0635                 | 0.00029  |
|       | $C1d-H\cdots H$  | 2.751                                                                                                                                                                                                                                                                          | 109.1     | 0.950            | 3.190                   | 0.0019                  | 0.0075           | 0.0012    | -0.0006                 | 0.00065  |
| 2     | N1c–H…O8b        | 1.766                                                                                                                                                                                                                                                                          | 166.1     | 0.932            | 2.679                   | 0.0363                  | 0.1476           | 0.0362    | -0.0356                 | 0.00068  |
|       | O10b–H…O9b       | 1.624                                                                                                                                                                                                                                                                          | 155.5     | 0.959            | 2.528                   | 0.0536                  | 0.1882           | 0.0539    | -0.0608                 | -0.00689 |
|       | C1a−H…O8b        | 2.840                                                                                                                                                                                                                                                                          | 110.4     | 0.950            | 3.294                   | 0.0052                  | 0.0234           | 0.0047    | -0.0035                 | 0.00116  |
|       | N1a–H…O9b        | 1.771                                                                                                                                                                                                                                                                          | 172.6     | 0.929            | 2.695                   | 0.0372                  | 0.1448           | 0.0363    | -0.0363                 | -0.00006 |

**Table S5.** Geometrical parameters of D–H···A hydrogen bonds (in Å and  $^{\circ}$ ) and QTAIM parameters (in atomic units) corresponding to the bond critical point (BCP).