Electronic Supplementary Information

Elusive Hypervalent Phosphorus... π Interactions: Evidence for Paradigm Transformation from Hydrogen to Phosphorus Bonding at Low Temperatures

P. K. Sruthi, Shubhra Sarkar, N. Ramanathan*, K. Sundararajan*

Materials Chemistry and Metal Fuel Cycle Group, HomiBhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102.

Corresponding authors: <u>nram@igcar.gov.in</u>; <u>sundar@igcar.gov.in</u>

Figure S1. Infrared spectra of C-H stretching and bending region of C_2H_2 . Grid A, Cand Grid B corresponds to POCl₃ with C_2H_2 in N₂ and Ar matrixes, respectively. Spectra are recorded at 12 K after annealing the matrix at 30 K(N₂) and 35 K (Ar).

Figure S2. Infrared spectra of C-H stretching region of C_2H_4 in N_2 matrix, spanning the region 3000-2970 cm⁻¹. All spectra are recorded at 12 K after annealing the matrix at 30 K.

Figure S3. Infrared spectra of C-H bending region of C_6H_6 in N_2 matrix, spanning the region 710-670 cm⁻¹. All spectra are recorded at 12 K after annealing at 30 K.

Figure S4. Infrared spectra in the P=O stretching region of POCl₃. Grid A, C, E and Grid B, D, F corresponds to the co-deposition experiments of POCl₃ with C_2H_2, C_2H_4, C_6H_6 in N₂ and Ar matrixes respectively. All spectra were recorded at 12 K after annealing at 30 K (N₂) and 35 K (Ar). Trace 'a' in all the grids correspond to computed scaled spectra and trace 'b' and 'c' correspond to variation of concentration of the π -donors for the fixed concentration of POCl₃.

Figure S5. Grids 'A' and 'B' correspond to the infrared spectra of C-H stretching region of C_2H_2 in N2 and Ar matrixes respectively. Grid 'C' shows the infrared spectra of C-H stretching region of C_2H_4 in N₂ matrix; Grid 'D' shows the infrared spectra of C-H bending region of C_2H_2 in N₂ matrix. Grid 'E' corresponds to the infrared spectra of C-H bending region of C_6H_6 in N₂ matrix. Spectra are recorded at 12 K after annealing the matrix at 30 K(N₂) and 35 K (Ar). Trace 'a' in all grids correspond to computed scaled spectra and trace 'b' and 'c' correspond to variation of concentration of POCl₃ for the fixed concentration of π -donors.

Figure S6. ESP mapping of C_2H_2 , C_2H_4 and C_6H_6 using 0.01 au contour surface.

- Bond Critical Point
- Ring Critical Point
- Cage Critical Point

Figure S7. AIM Structures of all POCl₃-C₂H₂, POCl₃-C₂H₄ and POCl₃-C₆H₆ heterodimers.

Figure S8. The structures of heterodimers of POCl₃ with non-aromatic π electron rich compounds computed at MP2/aug-cc-pVDZ level of theory; A) POCl₃: Cyclopropene B) POCl₃:1, 3-Cyclopentadiene C) POCl₃:1, 4-Cyclohexadiene

Figure S9. The structures of $POCl_3$ with substituted C_2H_2 heterodimers computed at MP2/augcc-pVDZ level of theory. The hydrogen bonding angle is shown alongside.

Figure S10. Bar Graph showing the different stabilizing and destabilizing interactions in PCl_3 heterodimers with C_2H_2 (P-A), C_2H_4 (P-E) and C_6H_6 (P-B).

Computed Wavenumber ^a (cm ⁻¹)		Experi					
		N ₂		Ar		Mode Assignment	
v	$\Delta \mathbf{v}$	v	$\Delta \mathbf{v}$	v	$\Delta \mathbf{v}$		
			POCl ₃				
1251.3(127)	-	1316.2/1313.5/ 1310.8°	-	1315.5/1314.2/ 1312.8°	-	v_1 mode in POCl ₃	
C_2H_2							
3431.7(93)	-	3283.6	-	3289.5	-	v_3 mode in C_2H_2	
702.7(95) 702.7(95)	-	747.2/741.9°	-	737.1	-	v_5 mode in C_2H_2	
PA-I							
3400(183)	-31.1	3238.4/3236.7°	-46.0	3247.8	-41.7	v_3 mode in C_2H_2	
737.2(119) 740.21(83)	34.2 37.1	770.5 774.9/777.3°	25.9 29.6	_b	-	v_5 mode in C_2H_2	
1239.3(133)	-12.1	1307.9/1305.1°	-7.0	1307.5	-6.7	v_1 mode in POCl ₃	
		· · ·	C ₂ H ₄		· · · · ·		
3175.6(11)	-	2989.8	-	2995.8	-	v_{11} mode in C_2H_4	
			PE-I				
3172.6(8)	-3.0	2983.6	-6.2	_b	-	v_{11} mode in C_2H_4	
1248.2(124)	-3.1	1309.1/1306.9°	-5.5	1310.2	-4.0	v_1 mode in POCl ₃	
			C ₆ H ₆				
678.3(116)	-	678.2	-	675.0	-	v_4 mode in C_6H_6	
			PB-I	1	<u>г </u>		
679.3(124)	1.0	683.3	5.1	_b	-	v_4 mode in C_6H_6	
1246.9(102)	-4.5	1307.7/1306.2°	-6.6	1307.9/1309.8°	-5.3	v_1 mode in POCl ₃	

Table S1. Computed and experimental vibrational wavenumbers, shifts in the wavenumbers and mode assignments for $POCl_3-C_2H_2/C_2H_4/C_6H_6$ dimers calculated at the MP2 level of theory using aug-cc-pVDZ basis set.

^aIntensities in km/mol given in parenthesis

^bFeatures were not observed experimentally

^cAverage values are taken to compute the vibrational shifts

Table S2. Electron occupancies of various NBOs of $POCl_3-C_2H_2/C_2H_4/C_6H_6$ complexes computed at MP2/aug-cc-pVDZ level of theory. The important donor-acceptor delocalization interaction and delocalization energies (E₂) are also shown.

Complexes	NBO	Occupancy	Donor-Acceptor delocalization interaction	E ₂ (kcal/mol)
		POCl ₃ -C ₂ H ₂ Hete	rodimers	(Real mol)
	n ¹ O2	1.97214(1.97348) ^a		1.1.0
	σ*(C6-H9)	0.01086(0.00000) ^b	$\neg n^{1}O2 \rightarrow \sigma^{*}(C6-H9)$	1.19
	n ³ O2	1.82487(1.81998) ^a	302 *(C(110)	0.70
	σ *(C6-H9)	0.01086(0.00000) ^b	$= n^{3}O2 \rightarrow \sigma^{*}(C6-H9)$	2.73
	n ³ Cl3	1.98794(1.98853) ^a	$r^{3}C^{12} \rightarrow -*(C(-C7))$	0.05
	π*(C6-C7)	0.00966(0.00000) ^b	$\Pi^{*}CI3 \rightarrow \pi^{*}(CO-C7)$	0.03
	n ³ Cl4	1.98794(1.98853) ^a	$-n^{3}C14 \rightarrow \pi^{*}(C6, C7)$	0.05
PA-I	π*(C6-C7)	0.00966(0.00000) ^b	$\Pi \subset \Pi \to \mathcal{H} (CO-C7)$	0.03
	σ*(P1-O2)	0.10136(0.09868) ^a	$= \sigma^*(P1_02) \rightarrow \sigma^*(C6_1H9)$	0.24
	σ*(C6-H9)	0.01086(0.00521) ^b	0 (11-02) /0 (00-11))	0.24
	σ*(P1-Cl5)	0.16991(0.17462) ^a	$\sigma^*(P1-C15) \rightarrow \pi^*(C6-C7)$	0.14
	$\pi^{*}(C6-C7)$	0.00033(0.00000) ^b	0 (11 013) /# (00 07)	0.14
	π (C6-C7)	1.99862(1.99980) ^b	π (C6-C7) $\rightarrow \sigma^{*}$ (P1-C15)	0.07
	σ*(P1-Cl5)	0.16991(0.17462) ^a		0.07
	n ¹ O2	1.97084(1.97348) ^a	$-$ n ¹ O2 $\rightarrow \sigma$ *(C6-H9)	2 27
	<u>σ*(C6-H9)</u>	0.01229(0.00000) ^b		
PA-II	n ³ O2	1.82587(1.81998) ^a	$-n^{3}O2 \rightarrow \sigma *(C6-H9)$	2.95
	<u>σ*(C6-H9)</u>	0.01229(0.00000) ^b		
	n ² Cl5	1.95236(1.95547) ^a	$-$ n ² Cl5 $\rightarrow \pi^*$ (C6-C7)	0.19
	$\pi^*(C6-C7)$	$0.00961(0.00000)^{0}$, ,	
	$\sigma^*(PI-O2)$	$0.10095(0.09868)^a$	$\sigma^*(P1-O2) \rightarrow \sigma^*(C6-H9)$	0.35
	$\frac{\sigma^*(C6-H9)}{\sigma^*(C6-H9)}$	$0.01229(0.00000)^{0}$		
	$n^{4}Cl3$	$\frac{1.95416(1.95547)^{a}}{0.00000}$	$-$ n ² Cl3 $\rightarrow \pi$ *(C6-C7)	0.09
	$\pi^{+}(CO-C/)$	$1.05416(1.05547)^{a}$		
	$\pi^{*}(C6, C7)$	$1.93410(1.93347)^{a}$	$-$ n ² Cl3 \rightarrow σ *(C6-C7)	0.13
	$\frac{0^{-1}(C0-C7)}{n^{2}C^{12}}$	$1.05416(1.05547)^{a}$		
	$\pi^{*}(C_{6}C_{7})$	$1.93410(1.93347)^{\circ}$	$-$ n ² Cl3 $\rightarrow \pi$ *(C6-C7)	0.33
	$n^{3}C13$	$1.95317(1.95358)^{a}$		
	$\pi^{*}(C6-C7)$	0.00891(0.00000) ^b	$- n^3Cl3 \rightarrow \pi * (C6-C7)$	0.08
	n^1Cl4	$1.98828(1.98853)^{a}$		
	$\pi^{*}(C6-C7)$	0.00891(0.00000) ^b	$-$ n ¹ Cl4 $\rightarrow \pi$ *(C6-C7)	0.09
PA-III	n^2Cl4	1 95416(1 95547) ^a		
	$\sigma^{*}(C6-C7)$	0.00075(0.00000) ^b	$-$ n ² Cl4 \rightarrow σ *(C6-C7)	0.13
	n ² Cl4	1.95416(1.95547) ^a		
	$\pi * (C6-C7)$	0.00891(0.00000) ^b	$-$ n ² Cl4 $\rightarrow \pi$ *(C6-C7)	0.33
	n ³ Cl4	1.95317(1.95358) ^a	3014 *(0(.07)	0.00
	π*(C6-C7)	0.00891(0.00000) ^b	$- n^{3}Cl4 \rightarrow \pi^{*}(C6-C7)$	0.08
	n ¹ Cl5	1.98834(1.98853) ^a	-*(C(-C7))	0.00
	π*(C6-C7)	0.00891(0.00000) ^b	$- n^{*}CIS \rightarrow \pi^{*}(CO-C7)$	0.06
	n ² Cl5	1.95427(1.95547) ^a	$p^{2}C_{15} \rightarrow \pi^{*}(C_{15}, C_{15})$	0.22
	π*(C6-C7)	0.00891(0.00000) ^b	$\Pi \subset I \rightarrow \pi (C \circ - C /)$	0.22
	π C6-C7	1.99886(1.99980) ^b	$-\pi C6 C7 \rightarrow \pi^{*}(D1 O2)$	0.08
	σ *(P1-O2)	0.09787(0.09868) ^a	$\pi \cup - \cup $	0.08

Complexes	NBO	Occupancy	Donor-Acceptor delocalization interaction	E ₂ (kcal/mol)
		POCl ₂ -C ₂ H ₄ Hete	rodimers	(Kcal/mor)
	n^2O^2	1 82359(1 81998) ^a		
	$\sigma^*(C6-H8)$	0.00853(0.00820) ^b	$\neg n^2O2 \rightarrow \sigma^*(C6-H8)$	0.09
	n^2O2	1.82359(1.81998) ^a	2	
	σ*(C6-H9)	0.00849(0.00820) ^b	$\neg n^2O2 \rightarrow \sigma^*(C6-H9)$	0.17
	n ² O2	1.82359(1.81998) ^a		
	σ*(C7-H10)	0.00853(0.00820) ^b	$\neg n^2O2 \rightarrow \sigma^*(C7-H10)$	0.09
	n ² O2	1.82359(1.81998) ^a		0.15
	σ*(C7-H11)	0.00849(0.00820) ^b	$\neg n^2O2 \rightarrow \sigma^*(C/-H11)$	0.17
	n ³ O2	1.82120(1.81998) ^a	300 *(C(110)	0.00
	σ*(C6-H9)	0.00849(0.00820) ^b	$n^{3}O2 \rightarrow \sigma^{*}(C6-H9)$	0.09
	n ³ O2	1.82120(1.81998) ^a	302 *(07.1111)	0.00
	σ*(C7-H11)	0.00849(0.00820) ^b	$n^{3}O2 \rightarrow \sigma^{*}(C/-HII)$	0.09
	n ² Cl3	1.95396(1.95547) ^a	$m^2C^{12} \rightarrow -*(C(-C7))$	0.22
	σ*(C6-C7)	0.00223(0.00000) ^b	$\Pi^{-}CIS \rightarrow G^{+}(CO^{-}C7)$	0.22
	n ³ Cl3	1.95224(1.95358) ^a	$n^{3}C^{12} \rightarrow \pi^{*}(C(C^{2}))$	0.22
	σ*(C6-C7)	0.00223(0.00000) ^b	$\Pi^{-}CI \rightarrow \delta^{-}(C\delta^{-}C7)$	0.22
PE-I	n ² Cl4	1.95396(1.98853) ^a	$p^{2}C^{1}(1) = \sigma^{*}(C^{2}(C^{2}))$	0.22
	σ*(C6-C7)	0.00223(0.00000) ^b	$11 C14 \rightarrow 0^{\circ} (C0 - C7)$	0.22
	n ³ Cl4	1.95224(1.95547) ^a	$p^{3}C^{1}/2 \rightarrow \sigma^{*}(C^{6}, C^{7})$	0.22
	σ*(C6-C7)	0.00223(0.00000) ^b		0.22
	σ(C6-C7)	1.99732(1.99934) ^b	$\sigma(C6-C7) \rightarrow \sigma^*(P1-O2)$	0.10
	σ*(P1-O2)	0.09961(0.09868) ^a	0(00-07) 70 (11-02)	0.10
	σ(C6-C7)	1.99732(1.99934) ^b	$\sigma(C6-C7) \rightarrow \sigma^*(P1-C15)$	0.39
	σ*(P1-Cl5)	0.17202(0.17462) ^a	0(00-07) / 0 (11-015)	0.57
	π(C6-C7)	1.99165(1.99235) ^b	$\pi_2(C6-C7) \rightarrow \sigma^*(P1-O2)$	0.07
	σ*(P1-O2)	0.09961(0.09868) ^b		0.07
	n ² O2	1.82209(1.81998) ^a	$n^2 \Omega^2 \rightarrow \sigma^* (C_6 H_8)$	0.28
	σ*(C6-H8)	0.01018(0.00820) ^b		0.20
	n ³ O2	1.82067(1.81998) ^a	$n^2 \Omega^2 \rightarrow \sigma^* (\Gamma_6 H_9)$	1 30
	σ*(C6-H8)	0.01018(0.00820) ^b		1.57
PE-II	n ³ Cl4	1.95128(1.98853) ^a	$n^{3}C^{1}4 \rightarrow \sigma^{*}(C7-H10)$	0.41
	σ*(C7-H10)	0.00977(0.00820) ^b		0.41
	n ³ Cl5	1.95127(1.95358) ^a	$n^{3}Cl5 \rightarrow \sigma^{*}(C7-H10)$	0.41
	σ*(C7-H10)	0.00977(0.00820) ^b		0.11
	<u>σ*(P1-Cl3)</u>	0.17242(0.17462) ^a	$\sigma^*(P1-C13) \rightarrow \sigma^*(C6-H8)$	0.07
	<u>σ*(C6-H8)</u>	0.01018(0.00820) ^b		0.07
	n ² Cl3	<u>1.95128 (1.95547)</u> ^a	$n^2Cl3 \rightarrow \sigma^*(C6-C7)$	0.27
	σ*(C6-C7)	0.00104 (0.00000) ^b		
	n ² Cl3	1.95128 (1.95547) ^a	$n^2Cl3 \rightarrow \pi^*(C6-C7)$	0.05
PE-III	$\pi^{*}(C6-C7)$	0.00227(0.00246)		
	$\sigma(Cb-C')$	1.99429 (0.17462) ^a	$\neg \sigma(C6-C7) \rightarrow \sigma^*(P1-Cl3)$	0.79
	$\sigma^{*}(P1-CI3)$	$0.1/1/3(0.1/462)^{a}$		
	$\pi(Cb-C/)$	<u>1.99277 (1.99235)</u> 0.17172 (0.17462)€	$\pi(C6-C7) \rightarrow \sigma^*(P1-C13)$	0.17
	σ*(P1-Cl3)	$0.1/1/3 (0.1/462)^{a}$		

Complexes	NBO	Occupancy	Donor-Acceptor delocalization interaction	E ₂ (kcal/mol)	
		POCl ₃ -C ₆ H ₆ Heter	odimers	(
	n ² O2	1.82409(1.81998) ^a	202 *(0(07)	0.00	
	σ*(C6-C7)	0.01414(0.01389) ^b	$n^2O2 \rightarrow \sigma^*(C6-C7)$	0.08	
	n ² O2	1.82409(1.81998) ^a	-*(C(-C7))	0.22	
	$\pi^*(C6-C7)$	0.33274(0.33237) ^b	$n^2O2 \rightarrow \pi^*(Co-C/)$	0.22	
	n ² O2	1.82409(1.81998) ^a	$n^2 O^2 \rightarrow \pi^* (C^{11} C^{15})$	0.07	
	σ*(C11-C15)	0.01385(0.01389) ^b	$11-02 \rightarrow 0^{\circ}(C11-C13)$	0.07	
	n ² O2	1.82409(1.81998) ^a	$n^2 \Omega^2 \to \pi^* (C^{11} C^{15})$	0.28	
	$\pi^*(C11-C15)$	0.32093(0.33237) ^b	$11-02 \rightarrow \pi^{+}(C11-C13)$	0.28	
	$\pi(C6-C7)$ 1.66862(1.66397) ^b		$\pi(C \in C^{2}) \rightarrow \pi^{*}(\mathbb{P}^{1} \cap C^{2})$	0.08	
	σ*(P1-O2)	0.10015(0.09868) ^a	$\pi(CO-C/) \rightarrow O^{-}(FI-O2)$	0.08	
DDI	π(C6-C7)	1.66862(1.66397 ^b	$\pi(C_{1}(C_{2}(C_{1}))) = \pi^{*}(D_{1}(C_{1}))$	0.07	
I D-1	σ*(P1-Cl4)	0.17663(0.17462) ^a	$\pi(CO-C/) \rightarrow O^{-}(FI-CI4)$	0.07	
	π(C6-C7)	1.66862(1.66397) ^b	$\pi(C \in C^{-1}) \rightarrow \pi^{*}(D \mid C^{-1})$	0.60	
	σ*(P1-Cl5)	0.17419(0.17462) ^a	$n(co-c_{1}) \rightarrow o(11-c_{13})$	0.00	
	π(C8-C12)	1.67107(1.66397) ^b	$\pi(C8-C12) \rightarrow \sigma^*(P1-C13)$	0.07	
	σ*(P1-Cl3)	0.16903(0.17462) ^a	$n(co-c_{12}) \rightarrow 0 (11-c_{13})$	0.07	
	π(C6-C7)	1.66862(1.66397) ^b	$\pi(C6-C7) \rightarrow \sigma^*(P1-O2)$	0.24	
	σ*(P1-O2)	0.10015(0.09868) ^a	<i>n</i> (co-c7) / o (11-02)	0.24	
	π(C8-C12)	1.67107(1.66397) ^b	$\pi(C8-C12) \rightarrow \sigma^*(P1-C13)$	0.25	
	σ*(P1-Cl3)	0.16903(0.17462) ^a	<i>m</i> (eo-eiz) + o (i i-eis)	0.25	
	π(C11-C15)	1.65774(1.66397) ^b	$\pi(C11-C15) \rightarrow \sigma^{*}(P1-O2)$	0.09	
	σ*(P1-O2)	0.10015(0.09868) ^a		0.09	
	n ² Cl3	1.95555(1.95547) ^a	$n^2Cl_3 \rightarrow \sigma^*(Cl_2-Cl_5)$	0.06	
	<u>σ*(C12-C15)</u>	0.01410(0.01389) ^b			
	n ³ Cl3	1.95437(1.95358) ^a	$n^{3}Cl3 \rightarrow \pi^{*}(C8-Cl2)$	0.09	
	$\pi^{*}(C8-C12)$	0.33277(0.33237)°			
	n ² Cl4	1.95556(1.95547) ^a	$n^2Cl4 \rightarrow \sigma^*(C8-C12)$	0.06	
	<u>σ*(C8-C12)</u>	0.01410(0.01389) ^b		0.00	
	n ² Cl4	1.95556(1.95547) ^a	$n^2Cl4 \rightarrow \pi^*(C8-Cl2)$	0.24	
	π*(C8-C12)	0.33277(0.33237) ^b			
	n ² Cl4	1.95556(1.95547) ^a	$n^2Cl4 \rightarrow \pi^*(Cl1-Cl5)$	0.21	
	$\pi^{*}(C11-C15)$	0.01401(0.33237) ^b			
	n°Cl4	1.95438(1.95358) ^a	$n^{3}Cl4 \rightarrow \pi^{*}(C11-C15)$	0.10	
	$\pi^*(C11-C15)$	0.33111(0.33237)			
PB-II	n°Cl5	$1.94930(1.95358)^{a}$	$n^{3}Cl5 \rightarrow \pi^{*}(C6-C7)$	0.05	
	$\pi^{*}(C6-C/)$	$0.33413(0.33237)^{0}$			
	$\pi(C6-C/)$	1.66446(1.66397)	$\pi(C6-C7) \rightarrow \sigma^*(P1-C15)$	0.22	
	$\frac{\sigma^{*}(PI-CIS)}{(CP,CI2)}$	$0.16865(0.1/462)^a$			
	$\pi(C8-C12)$	$1.66304(1.66397)^{0}$	$\pi(C8-C12) \rightarrow \sigma^*(P1-O2)$	0.13	
	$\sigma^*(PI-O2)$	$0.09823(0.09868)^{\circ}$			
	$\pi^{*}(C0-C7)$	$0.33413(0.33237)^{\circ}$	$\pi^*(C6-C7) \rightarrow \sigma^*(P1-Cl5)$	0.32	
	$\sigma^{*}(P1-C13)$	$0.10803(0.17402)^{\circ}$			
	$\pi^{*}(Co-C12)$	$0.332/7(0.33237)^{\circ}$	$\pi^*(C8-C12) \rightarrow \sigma^*(P1-O2)$	0.07	
	$\pi^{*}(C_{2}C_{1}^{-1})$	0.03025(0.03000) ²			
	$\pi^{*}(C_{1-C_{1-1}})$	$0.33277(0.33237)^{\circ}$ $0.16865(0.17762)^{\circ}$	$\pi^*(C8-C12) \rightarrow \sigma^*(P1-Cl5)$	0.09	
	$\pi^*(C11_C15)$	0 33111(0 33737)b			
	1 (011 013)	0.00111(0.00401)	$\pi^{*}(C11 C15) \rightarrow \sigma^{*}(D1 C15)$	0.45	

	σ*(P1-Cl5)	0.16865(0.17462) ^a		
	n ¹ Cl2	1.98813(1.98853) ^a	$n^{2}C^{12} \rightarrow -*(C^{2} U^{12})$	0.10
	σ*(C8-H13)	0.01316(1.98451) ^b	$II-CI2 \rightarrow 8^{\circ}(C8-H13)$	0.19
	n ³ Cl2	1.95269(1.95547) ^a	$n^{3}C^{12} \rightarrow \pi^{*}(C^{2} U^{12})$	1.62
	σ*(C8-H13)	0.01316(1.98451) ^b	$11^{-}C12 \rightarrow 8^{-}(C8-H13)$	1.02
	n ¹ O5	1.97211(1.97348) ^a	$n^{1}O5 \rightarrow \pi^{*}(C6 C7)$	0.12
	σ*(C6-C7)	0.01381(0.33237) ^b	$1103 \rightarrow 8^{\circ}(C0-C7)$	0.12
	n ¹ O5	1.97211(1.97348) ^a	$n^{1}O5 \rightarrow \pi^{*}(C6 \text{ HO})$	0.76
	σ*(C6-H9)	0.01042(1.98451) ^b	$\Pi^{*}\text{OS} \rightarrow G^{*}(\text{CO-H9})$	0.70
	n ³ O5	1.82192(1.81998) ^a		
PB-III	σ*(C6-C7)	0.01381(0.33237) ^b	$n^2Cl4 \rightarrow \sigma^*(C11-C15)$	0.09
	n ³ O5 1.82192(1.81998) ^a		$r^{3}O5 \rightarrow -*(C(10))$	0.07
	σ*(C6-H9)	0.01042(1.98451) ^b	$ n^{3}\text{OS} \rightarrow \sigma^{*}(\text{CO-H9}) $	0.07
	n ³ O5	1.82192(1.81998) ^a	-305 $-*(C^{2} C^{1})$	0.09
	σ*C8-C12)	0.01408(0.33237) ^b	$11^{\circ}03 \rightarrow 0^{\circ}(0.8 - 0.12)$	0.08
	n ³ O5	1.82192(1.81998) ^a	$n^{3}O5 \rightarrow \pi^{*}(C9 \text{ U12})$	0.26
	σ*(C8-H13)	0.01316(1.98451) ^b	$1003 \rightarrow 0^{\circ}(C8-H13)$	0.20
	σ (C6-C8)	1.97816(0.33237) ^b	$\sigma(C(C_{2}^{(0)})) = \sigma^{*}(B_{1}^{(0)})$	0.07
	σ*(P1-O5)	0.09916(0.09868) ^a	$0 (CO-Co) \rightarrow 0^{\circ} (PI-OS)$	0.07

^aOccupancy of monomeric POCl₃ is given in parentheses. ^bOccupancy of monomeric $C_2H_2/C_2H_4/C_2H_6$ is given in parentheses.

Heterodimers	$\rho(\mathbf{r_c})^a$	$\Delta^2 \rho(\mathbf{r_c})^a \qquad \qquad \lambda_1^a$		λ_2^a	λ_3^a			
	PA-I							
02…Н9	0.01344	-0.01025	-0.01360	-0.01284	0.06742			
P1-O2	0.20204(0.20313)	-0.37256(-0.37754)	-0.32322(-0.32412)	-0.32316(-0.32412)	2.13664(2.15841)			
С6-Н9	0.27497(0.27608)	0.27922(0.27659)	-0.72496(-0.71725)	-0.72448(-0.71725)	0.33255(0.32815)			
C6-C7	0.37026(0.37003)	0.216620(0.21497)	-0.55040(-0.54464)	-0.55018(-0.54464)	0.23394(0.22941)			
	L	I	PA-II	L	1			
02…Н9	0.01463	-0.01173	-0.01551	-0.01536	0.07778			
P1-O2	0.20206(0.20313)	-0.37323(-0.37754)	-0.32392(-0.32412)	-0.32350(-0.32412)	2.14034(2.15841)			
С6-Н9	0.27474(0.27608)	0.27897(0.27659)	-0.72569(-0.71725)	-0.72557(-0.71725)	0.33538(0.32815)			
C6-C7	0.37048(0.37003)	0.21693(0.21497)	-0.55148(-0.54464)	-0.55133(-0.54464)	0.23509(0.22941)			
	I	Р	A-III	I				
Cl3…C7	0.00536	-0.00373	-0.00292	-0.00225	0.02011			
Cl4····C7	0.00536	-0.00373	-0.00292	-0.00225	0.02011			
Cl5…C6	0.00467	-0.00295	-0.00245	-0.00191	0.01617			
C6-C7	0.36969(0.37003)	0.21479(0.21497)	-0.54519(-0.54464)	-0.54422(-0.54464)	0.23026(0.22941)			
	PE-I							
O2…H11	0.00643	-0.00599	-0.00478	-0.00284	0.03160			
O2…H9	0.00643	-0.00600	-0.00479	-0.00285	0.06316			
P1-O2	0.20281(0.20313)	-0.37642(-0.37754)	-0.32409(-0.32412)	-0.32363(-0.32412)	2.15341(2.15841)			
Cl4····C7	0.00548	-0.00386	-0.00253	-0.00169	0.01964			
Cl3···C6	0.00548	-0.00386	-0.00253	-0.00169	0.01967			
C6-C7	0.32418(0.32462)	0.20038(0.20080)	-0.66736(-0.66939)	-0.49651(-0.49653)	0.36233(0.36272)			
C7-H11	0.27403(0.27307)	0.25316(0.24989)	-0.68897(-0.68234)	-0.67906(-0.67293)	0.35541(0.35570)			
С6-Н9	0.27403(0.27307)	0.25315(0.24989)	-0.68896(-0.68234)	-0.67905(-0.67293)	0.35541(0.35570)			
P1-Cl4	0.12818(0.12759)	0.00874(0.00945)	-0.13691(-0.13558)	-0.13452(-0.13339)	0.23649(0.23116)			
P1-Cl3	0.12818(0.12759)	0.00872(0.00945)	-0.13692(-0.13558)	-0.13453(-0.13339)	0.23653(0.23116)			
	I	ŀ	PE-II	I	1			
O2…H8	0.00902	-0.00685	-0.00832	-0.00792	0.04364			
Cl5H10	0.00493	-0.00406	-0.00348	-0.00299	0.02271			
Cl4H10	0.00493	-0.00406	-0.00347	-0.00299	0.02268			
P1-O2	0.02293(0.20313)	-0.37630(-0.37754)	-0.32421(-0.32412)	-0.32420(-0.32412)	2.15361(2.15841)			
С6-Н8	0.27428(0.27307)	0.25443(0.24989)	-0.69061(-0.68234)	-0.68198(-0.67293)	0.35488(0.35570)			
C7-H10	0.27295(0.27307)	0.24829(0.24989)	-0.68037(-0.68234)	-0.67095(-0.67293)	0.38514(0.35570)			
P1-C15	0.12803(0.12759)	0.00851(0.00945)	-0.13634(-0.13558)	-0.13422(-0.13339)	0.23651(0.23116)			
P1-Cl4	0.12803(0.12759)	0.00853(0.00945)	-0.13633(-0.13558)	-0.13422(-0.13339)	0.23643(0.23116)			

Table S3. The properties of (3,-1) bond critical points (BCP) of various heterodimers. The BCPs of the monomers are given in parenthesis.

	PE-III							
Cl3…C6	0.00796	-0.00543	-0.00473	-0.00279	0.02923			
Cl3…C7	0.00796	-0.00543	-0.00473	-0.00279	0.02923			
C6-C7	0.32403(0.32462)	0.20023(0.20080)	-0.66726(-0.66939)	-0.49642(-0.49653)	0.36276(0.36272)			
P1-Cl3	0.12930(0.12759)	0.01066(0.00945)	-0.13837(-0.13558)	-0.13579(-0.13339)	0.23152(0.23116)			
			PB-I	I				
O2…C7	0.00747	-0.00576	-0.00336	-0.00191	0.02832			
Cl4…C7	0.00613	-0.00402	-0.00251	-0.00128	0.01988			
Cl3…C7	0.00736	-0.00515	-0.00321	-0.00059	0.02442			
C6-C7	0.29105(0.29544)	0.17412(0.17450)	-0.58336(-0.58485)	-0.48624(0.48768)	0.37310(0.37445)			
P1-O2	0.20271(0.20313)	-0.37592(-0.37754)	-0.32401(-0.32412)	-0.32337(-0.32412)	2.15105(2.15841)			
P1-Cl4	0.12684(0.12759)	-0.01005(0.00945)	-0.13444(-0.13558)	-0.13241(-0.13339)	0.22664(0.23116)			
P1-C13	0.12983(0.12759)	0.00679(0.00945)	-0.13933(-0.13558)	-0.13687(-0.13339)	0.24901(0.23116)			
	PB-II							
Cl5…C7	0.00696	-0.00527	-0.00353	-0.00018	0.02483			
Cl5…C11	0.00698	-0.00527	-0.00345	-0.00017	0.02474			
C15C6	0.00698	-0.00527	-0.00345	-0.00017	0.02471			
Cl5…C12	0.00713	-0.00509	-0.00358	-0.00043	0.02344			
Cl3…Cl2	0.00587	-0.00378	-0.00303	-0.00113	0.01926			
Cl4…C12	0.00587	-0.00378	-0.00303	-0.00113	0.01926			
C6-C7	0.29506(0.29544)	0.17429(0.17450)	-0.58356(-0.58485)	-0.48717(0.48768)	0.37358(0.37445)			
C11C7	0.29506	0.17429	-0.58356	-0.48717	0.37358			
P1-C15	0.12980(0.12759)	0.00665(0.00945)	-0.13923(-0.32412)	-0.13634(-0.13339)	0.24897(0.23116)			
P1-Cl4	0.12645(0.12759)	0.01006(0.00945)	-0.13365(-0.32412)	-0.13149(-0.13339)	0.22491(0.23116)			
P1-C13	0.12646(0.12759)	0.01004(0.00945)	-0.13365(-0.32412)	-0.13149(-0.13339)	0.22497(0.23116)			
			PB-III					
О5…Н9	0.00823	-0.00768	-0.00757	-0.00702	0.04532			
O5H13	0.00667	-0.00611	-0.00551	-0.00445	0.03440			
Cl3H13	0.00718	-0.00575	-0.00559	-0.00557	0.03417			
P1-Cl3	0.12744(0.12759)	0.00896(0.00945)	-0.13525(-0.32412)	-0.13339(-0.13339)	0.23281(0.23116)			
P1-O5	0.20286(0.20313)	-0.37691(-0.37754)	-0.32459(-0.32412)	-0.32348(-0.32412)	2.15571(2.15841)			
С6-Н9	0.27512(0.27301)	0.25594(0.24926)	-0.69731(0.68406)	-0.68803(-0.67422)	0.36156(0.36126)			
С8-Н13	0.27463(0.27301)	0.25213(0.24926)	-0.69148(0.68406)	-0.68181(-0.67422)	0.36477(0.36126)			

Table	S4 .	Proton	affinity	of C_2H_{2} ,	C_2H_4 ,	C_6H_6 and	substituted	C_2H_2	calculated	at MP2	level of	эf
theory	with	h aug-co	c-pVDZ	basis set.								

Structures	Proton affinity
	(kcal/mol)
C_2H_2	-149.9
C ₂ H-CN	-129.8
C_2H-NO_2	-148.1
C ₂ H-F	-154.1
C ₂ H-Cl	-161.6
C ₂ H-Br	-163.6
C_2H-CH_3	-168.0
$C_2H-C_6H_6$	-190.8
C_2H-NH_2	-206.2
C_2H_4	-160.3
C_6H_6	-313.3