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1) Experimental Setup

The experiment utilizes helium nanodroplets as a matrix environment to facilitate the for-

mation of cold ionic cluster complexes. Dopants are picked up from the gaseous phase

by a helium nanodroplet beam, produced by free jet expansion of pressurized He (purity

99.9999%, Linde) through a cooled 5 µm nozzle. The temperature of the nozzle (9– 12 K),

the stagnation pressure before the nozzle (20–25 bar) as well as the pressure in the vac-

uum vessel (10−4 mbar under operating conditions) determine the size distribution of the

helium droplets.1,2 The dopant is either already in gas phase or is evaporated in an oven

and then exposed to the beam. Cesium (Sigma-Aldrich, purity 99.95%) was evaporated in

an ohmically heated oven at a temperature of 328 K and hydrogen (purity 99.999%, Messer)

or deuterium (purity 99.7%, Messer) were introduced afterwards in a differentially pumped

region. Neutral cesium atoms or clusters are strongly heliophobic and occupy dimple sites at

the surface of the He droplets,3 even in the presence of a highly polarizable complex such as

C60 inside the droplet,4 whereas hydrogen molecules are heliophilic and submerge into the

droplet.

After an atom or a molecule is picked up by a droplet, evaporative cooling boils off helium

until a terminal temperature (0.4 K) is reached or no helium remains to be ejected. Excess

energy released by the formation of molecular bonds or subsequent ionization processes can

also be dissipated via the same mechanism. Ionic complexes tagged with some He atoms

are expected to be at temperatures corresponding to the binding energy of the most weakly

bound He atom.

Electron bombardment of the doped helium droplet can produce ionization of the alkali

atoms by Penning ionization or ionization of hydrogen molecules via charge transfer from
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He+.2 It is found that initial ionization of Cs is the dominant mechanism since (H2)nCs+

clusters are observed at electron energies lower than 25 eV, the threshold for ionization of

heliophilic dopants, and their abundance does not increase significantly for larger energies.

Hence, formation of (H2)nCs+ clusters (or (D2)nCs+) mainly occurs in the interior of the

droplet once the Cs+ ion is formed at the surface and subsequently submerges into the

droplet due to attractive electrostatic forces. As the initial He droplets contain ∼ 106 atoms,

the energy provided by the electron bombardment is insufficient to completely vaporize the

droplet. It is rather expected that the droplet becomes multiply charged5,6 and that the ions

measured in the mass spectra are pushed out of the droplet by the presence of additional

positively charged ions. Excess energy provided by these highly exothermic reactions lead to

the evaporation of preferably weakly bound hydrogen molecules, which leads to the relative

enhancement of the yield of particularly stable (H2/D2)nCs+ clusters.

Resulting mass spectra and ion efficiency curves are recorded with a high-resolution time

of flight mass spectrometer.7 The initial size distribution of the helium nanodroplets has to

be optimized to match the chosen pickup conditions and ionization parameters. Mass spectra

were evaluated by means of a custom-designed software.8 The routine includes automatic

fitting of a custom peak shape to the mass peaks and subtraction of background by fitting

a spline to the background level of the raw data.

2) Potential Energy Surface (PES)

The total interaction potential for (H2)nCs+ is assumed to be a sum of two-body (2B) and

three-body (3B) interactions:

V
[
(H2)nCs+

]
=

n∑
i=1

V 2B
[
H2(i)−Cs+

]
+

n∑
i<j

V 2B [H2(i)−H2(j)]+
n∑
i<j

V 3B
[
H2(i)−Cs+−H2(j)

]
.

(1)

First, for the H2-Cs+ 2B interaction, we have developed a new H2-Cs+ PES optimized

on accurate CCSD(T) interaction energies and obtained with the d-aug-cc-pV6Z9 and def2-

AQVZPP10 basis sets for H2 and Cs+, respectively. We have checked that the adopted basis

set is sufficiently large to guarantee well converged interaction energies, which are found to

deviate from those carried out in the global minimum region with the d-aug-cc-pV5Z/def2-

AQVZPP set of less than 0.9 meV (about 1%). The CCSD(T) computations have been

performed using the Molpro2012.1 package.11 The H2 molecule has been assumed as rigid

with an internuclear distance ρ= 0.766638 Å. The PES is then a function of only two Jacobi
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coordinates: the modulus of the vector ~r between the center of mass of the diatomic and

the cation, r, and the angle between ~r and the interatomic H2 axis, θ. Four different angles

were considered (shown in Fig.2 of the main article) The absolute minimum is found for

the T-shaped configuration (θ=90o), due to a leading charge-quadrupole interaction, with a

well depth and equilibrium distance of 62.4 meV and 3.37 Å, respectively. The PES is quite

anisotropic since for the linear geometry (θ=0o) the well depth is reduced to 9.2 meV at a

distance of 3.70 Å.

The H2-Cs+ 2B potential is represented analytically as a sum of non-covalent (VNC)

and electrostatic (Velec) contributions. The electrostatic contribution entails intermolecular

Coulomb interactions where Cs+ is a monopole and a linear distribution of charges is adopted

for H2 (as in Ref.12), consisting of two charges placed on each of the nuclei and a third one,

on the molecular center of mass. Those charges are derived from the molecule quadrupole

moment using simple geometrical considerations. An accurate value of the H2 quadrupole was

estimated to be 0.48226 a.u. as a result of calculations at the multireference ACPF (Averaged

Coupled Pair Functional) level with the aug-cc-pV6Z basis set9 which were performed by

following the guidelines reported in Ref.13 In addition, the non-covalent term, VNC , involving

both induction and van der Waals interactions, is represented using the atom-bond model14

and the Improved Lennard Jones (ILJ) formulation:15

VNC(r, θ) = ε(θ)

[
m

n(r, θ)−m

(
re(θ)

r

)n(r,θ)
− n(r, θ)

n(r, θ)−m

(
re(θ)

r

)m]
, (2)

where the long-range exponent m is set to 4 as corresponds to the leading charge-induced

dipole force in H2 − Cs+ and

n(r, θ) = β + 4

(
r

re(θ)

)2

ε(θ) = ε⊥ sin2(θ) + ε‖ cos2(θ)

re(θ) = r⊥e sin2(θ) + r‖e cos2(θ). (3)

Starting with an initial guess based on physical grounds (monomer polarizabilities16–18),

parameters ε⊥, ε‖, r⊥e , r
‖
e and β where fine-tuned by comparison with the CCSD(T) calcu-

lations. The analytical potential is compared with the CCSD(T) calculations in Fig.2 of the

main article, where it can be seen that the agreement is excellent.

Regarding the second term in Eq.1, the H2-H2 2B potential, we have also adopted simple

analytic expressions combining non-covalent and Coulomb-type contributions:

V 2B [H2(i)−H2(j)] = VNC(rij, θi) + VNC(rij, θj) + Velec(rij, θi, θj, φij), (4)
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where diatom-diatom Jacobi coordinates are used, i.e., rij is the distance between the H2(i)

and H2(j) centers of mass, θi and θj are the angles between the axes of H2(i) and H2(j) and

the intermolecular direction, and φij is the torsion angle. On the one hand, the electrostatic

term Velec is obtained using the same point charges representing the H2 quadrupole, described

above. On the other hand, the non-covalent contribution is given as a sum of two atom-

bond potentials: the first one, VNC(rij, θi), stands for the interaction between a rotating

H2(i) molecule and H2(j), the latter treated as a pseudo-atom, whereas diatoms change roles

for the second atom-bond interaction, VNC(rij, θj). Both contributions are formally identical

and given by an atom-bond ILJ function (Eq. 2). The corresponding parameters ε⊥, ε‖,

r⊥e , r
‖
e and β (m = 6 as corresponds to a pure van der Waals interaction) have been fitted

to the accurate PES of Patkowski et al19 which is based on high level ab initio calculations.

We decided to use the simpler form of Eq.4 (as compared with the PES of Ref.19) for

consistency in the complete force field model and for simplicity in the computation of first

derivatives, needed for some of the theoretical methods. Present potential is compared with

the Patkowski et al PES in Fig. S1, where it can be seen that the agreement is quite good.

Figure S1: H2-H2 interaction potential (in meV) as a function of the intermolecular dis-
tance r (in Å) and for various relative orientations (θa, θb, φab)= (0,0,0), linear; (90,90,0), H-
shaped, (90,90,90), X-shaped, and (90,0,0), T-shaped. Solid lines correspond to the present
potential, which are compared with the Patkowski et al19 PES, in dashed lines.

In addition to the reported 2B potentials that explicitly depend on the orientation of the

H2 molecules (rigid rotor approximation), we have also considered these molecules as pseu-

doatoms using potentials that represent the interaction averaged over all their orientations
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(pseudoatom approximation). These orientationally averaged potentials are also represented

by atom-atom ILJ functions as that of Eq. 2 but with constant well depths and equilibrium

positions, ε̄ and r̄e (the electrostatic contribution cancels out by the averaging). It was found

that setting these parameters to their spherical average (i.e., r̄e = (2r⊥e + r
‖
e)/3, etc.), the

corresponding ILJ function reproduces extremely well the result of the numerical integration

of the angular-dependent potential. It is worth noting that the orientationally averaged H2-

H2 potential is quite similar to that of Silvera-Goldman20 as well as the spherically averaged

Diep and Johnson potential.21
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Figure S2: (H2)2-Cs+ interaction potential (in meV) as a function of the angle formed
between the vectors pointing to the centers of mass of the two H2 molecules, with common
origin at Cs+. Throughout the scan, the H2 molecular axes are perpendicular to these vectors
(T-shaped configuration) as well as to each other. The distance between the H2 molecules
and Cs+ is 3.374 Å. Filled pink circles: ab-initio CCSD(T) supermolecular calculations; solid
(dashes-dotted) lines: present model (Eq.1), including (neglecting) the three-body terms. A
good agreement with the ab initio energies is achieved, the 3B effects playing non-negligible
role.

Finally, the third term in Eq.1 corresponds to the interaction between the dipoles that

the cation induces in the hydrogen molecules i and j as employed in previous studies22,23
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Table S1: Optimized parameters for the (H2)n-Cs+ PES, within the rigid rotor

and the pseudo-atom approximations. Distances r⊥e , r
‖
e , r̄e, and the internuclear

H-H distance ρ are in Å, while well depths ε⊥, ε‖ and ε̄ are in meV. Common
for the two approximations are m and β (dimensionless) and α, the H2 average
polarizability (from Ref.16), in Å3. H2 partial charges are in units of the proton
charge; qH is located on top of the H nuclei and qC at the bond center.

Rigid rotor Pseudo-atom

Dimer m β r⊥e r
‖
e ε⊥ ε‖ r̄e ε̄

H2-Cs+ 4 8.0 3.43 3.47 37.09 51.75 3.44 41.98

H2-H2 6 7.0 3.46 3.50 1.30 2.00 3.47 3.07

α 0.7870
ρ 0.76664
H2 charges qH =0.45955, qC = −2qH

V 3B
[
H2(i)−Cs+−H2(j)

]
= −α

2

4
[3rig3(rj)g5(rij) + 3rjg3(ri)g5(rij) (5)

−g3(ri)g3(rj)g1(rij)− 6g1(ri)g1(rj)g5(rij)

−2g1(ri)g3(rj)g3(rij)− 2g3(ri)g1(rj)g3(rij)]

where gn(r) = r−n, ri and rj are the distances between (the center of mass of) H2(i) and

H2(j) to Cs+, respectively, rij is the distance between the hydrogen molecules, and α is the

polarizability of H2. This magnitude is in fact a tensor which in the molecular frame is

diagonal with two distinct components α‖ and α⊥, so in principle the polarizability varies

with the orientation of the molecule with respect to the cation. We have found that this

anisotropic contribution is negligible (less than 0.1 meV difference in the total energy as

compared with using a spherically averaged polarizability, for (H2)2Cs+ at equilibrium).

Hence we have adopted, for the averaged polarizability, the reference value16 α = 0.7870

Å3. The extent of these induction effects for the (H2)2Cs+ cluster is shown in Fig.S2, where

the interaction potential is studied as a function of the angle formed between the centers

of mass of the two molecules, taking Cs+ at the vertex. It can be seen that our potential

model reaches a very good agreement with the ab initio (supermolecular) calculations of this

cluster and for this, the contribution of the 3B terms is non-negligible.
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We have checked that the inclusion in the interaction potential model of Axilrod-Teller-

Muto long range term22,24 has a negligible effect in the present system. Indeed, it has

been found that, for the equilibrium structure of the n=3 cluster, the inclusion of this 3B

dispersion contribution (taking the C9 coefficient from Ref.25) provides a correction of 0.087

meV, which corresponds to about 0.05% of the total interaction energy, while that for the

interacting induced dipole moments weighs for about 3%. This is because of the large size of

the central ion which imposes large enough distances among the H2 molecules so as to make

this contribution very small. A similar conclusion was reached for the He2Li+ system.22

Optimized values of all the parameters involved in the analytical RigRot and PsAt PESs

are given in Table S1.

3) Classical and Quantum Monte Carlo Methods

Energies and structures of the (H2/D2)nCs+ clusters were obtained using Basin-Hopping

(BH), Path Integral Monte Carlo (PIMC) and diffusion Monte Carlo (DMC) methods, de-

scribed below. On the one hand, the pseudoatom (PsAt) approximation and the correspond-

ing PsAt PES were used for the first two methods. On the other hand, diffusion Monte Carlo

calculations where performed considering the H2/D2 molecules as linear rigid rotors and us-

ing the more elaborated (RigRot) PES. Hydrogen and deuterium masses are mH= 1.008 and

mD= 2.014 a.m.u. and the interatomic distance is 0.76664 Å.

3.a) Basin-Hopping

Within the PsAt approximation, putative global energy minima of (H2/D2)nCs+ clusters

with n ≤ 30 were located using the BH method26 also known as the “Monte Carlo plus energy

minimization” approach of Li and Scheraga.27 This unbiased technique has been particularly

successful for the global optimization of various atomic and molecular systems.28–32 This

technique is a stochastic method that involves perturbation followed by minimization each

step. This method transform the PES into a collection of basins and explores them by

hopping between local minima. Suitable parameters for the BH method were determined for

all cluster sizes based on preliminary tests on (H2/D2)13Cs+. These benchmarks consisted

of 104 minimization steps and were initiated from independent random geometries, varying

the simulation temperature and the target acceptance ratios of the Monte Carlo simulation.

Although our global minima remain putative, they were obtained in all trajectories. This

should ensure a reasonably high degree of confidence.

The results were obtained at a constant simulation temperature of kBT = 3 meV and
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an acceptance ratio of 50%. A total of five runs of 2 × 105 basin-hopping steps each were

performed for all sizes.

Quantum effects were included through calculation of the zero point energy (ZPE) in the

harmonic approximation.23,33,34 To do this we built a database of local minima close to the

global minimum for each cluster size and choose the optimum BH+ZPE cluster geometry

as that giving a minimum for the sum of the potential and the corresponding ZPE. In some

cases, the geometry of this BH+ZPE global minimum differs from that of the BH one.

3.b) Path Integral Monte Carlo

The PIMC method has been reviewed extensively elsewhere.35 In brief, static properties

of a quantum system in thermodynamic equilibrium at temperature T can be accessed via

the partition function, which can be computed as the trace of the density matrix operator.

The thermal density of N quantum particles can be shown to be described by the density

of N purely classical ring polymers, each having P beads. This is the so called classical

isomorphism.36 Neighboring beads within one polymer are connected by harmonic springs,

whose force constants become weaker with increasing quantum character. Conversely, the

quantum–classical isomorphism can be seen as having P replica of the system. Neighboring

replica interact via the springs. Each replica is often regarded as imaginary time slice.

Quantum mechanical effects such as delocalization or tunneling of the particles derive from

the spread in position among the multiple beads that comprise the polymers. The price to

pay in order to describe a quantum system by using a classical system is the appearance

of multidimensional integrals. However, as the integrand is positive definite, Monte Carlo

methods are most suited to perform these calculations.

The energy was computed following the thermodynamic estimator:37

〈E(T )〉 =
3NP

2β
−

〈
P∑
ν=1

N∑
i=1

1

2
miω

2
i (r

ν
i − rν+1

i )2

〉
+

〈
1

P

P∑
ν=1

V (rν1 . . . r
ν
N)

〉
, (6)

where mi is the mass of particle i and rνi describes the position of the bead ν of particle

i. ω2
i = P/(~β)2 is the frequency of the harmonic springs connecting the beads. Brackets

indicate average over Monte Carlo steps, β = (kBT )−1 and V is the PES.

In the present application, the N = 1 + n particles correspond to the Cs+ cation and to

n H2 (or D2) molecules, treated within the PsAt approximation. Initial seeds are taken from

the cluster optimized configurations obtained within the BH approach. Calculations were

performed at 2 K, where still bosonic exchange is not expected to play any significant role.

The ring polymers contained 500 beads, 16 of them were displaced at each Monte Carlo step

according to the multilevel staging algorithm.38,39 A total of 104 sweeps for thermalization
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and 105 for statistics were performed, each sweep consisting of 103N MC steps. Standard

deviations of the resulting cluster energies are obtained by the block average method.40

Various estimators were computed in order to get more insight into the structure of these

clusters and the role of quantum effects. First, the degree of quantum delocalization of

particle i is estimated by means of the radius of gyration:

RGi =

√√√√ 1

P

P∑
ν=1

(rνi − rCi )2 (7)

where rCi = P−1
∑P

ν=1 rνi is the centroid of the polymer corresponding to particle i.

Moreover, the rigidity (solid-like versus liquid-like behavior) of the clusters is investigated

by means of Lindemann index,33,41 which for particle i expresses as:

δi =
1

P (N − 1)

P∑
ν=1

N∑
j 6=i

√〈
(rνij)

2
〉
−
〈
rνij
〉2〈

rνij
〉 (8)

where rνij is the distance between particles i and j at the time slice ν. A value of δi <

0.1 indicates a quite rigid (solid) cluster, whereas a clear fluid behavior of the molecules

corresponds to δi > 0.2.41

Finally, in order to quantify the extent of the electrostriction effect on the H2/D2 molecules

caused by the ionic impurity, the H2-H2 pair-distance distribution function was integrated

for values of the distance below 3.06 Å. This distance corresponds to the point where the

H2-H2 potential energy curve crosses the dissociation asymptote. The value of such integral

gives a quantitative estimate of the percentage of the probability density that falls in the

purely repulsive region of the H2-H2 interaction.

3.c) Diffusion Monte Carlo

The DMC method allows us the computation of the ground state of a system of quantum

particles.42–45 In this approach, the time-dependent Schrödinger equation transforms into a

diffusion equation after changing the variable time, t, by imaginary time, τ = it. Specifically,

the diffusion equation for a system of N translating and rotating rigid bodies is

~
∂Ψ

∂τ
= −

[
N∑
k=1

T transk + T rotk

]
Ψ− VΨ, (9)

where T transk and T rotk represent the translational and rotational operators for particle k and

V is the potential energy operator. Its solution can be written as
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Ψ(τ) =
∑
l

clΦle
−τEl/~ (10)

where Φl and El are the eigenstates and eigenenergies of the Hamiltonian. In this way, if the

zero of energy is chosen such that all the eigenvalues are positive, the longest lasting term

(τ →∞) of Eq.10 will correspond to the ground state of the system.

The diffusion equation (Eq. 9) is solved by a random-walk method as follows. The

function Ψ will be represented by population of replicas, each of them describing a specific

position and orientation of all the particles of the system. At each time step ∆τ the particles

of each replica will randomly translate according to a Gaussian distribution depending on ∆τ

and the constants of the kinetic energy term (masses). Analogously, the rotational motion

of the replicas is performed by randomly choosing a vector describing the angle and axis of

rotation with a probability related to ∆τ and the values of the moments of inertia of the

rotor.46 Finally, the potential term will determine the probability that a given replica will

multiply or disappear. More details on the method are given elsewhere.42–44

In practice, we have used the code developed by Sandler and Buch46,47 for the calculation

of ground state energies and probability distributions of rotating H2 (D2) molecules attached

to Cs+. This technique has been successful in the study of various molecular clusters.23,48,49

The (translational) motion of Cs+ was explicitly described. For a typical cluster size (n = 14),

six runs were usually performed, each of them involving- nine generations of a descendant

weighting procedure.44,50 An average of the final energies of the different runs is computed

and an associated error bar is given by the standard deviation with respect to these runs.

About 20000 replicas were propagated, first, using a time step of 20 a.u. for about 4000

steps. Then, in a second series, the time steps is enlarged to 80 a.u. and the propagation

takes about 6000 steps. The initial population of replicas was built from a Gaussian spatial

distribution (widths of about 0.3 Å) centered in a reference geometry corresponding to

a putative minimum of the PES. This geometry was obtained by running classical Monte

Carlo calculations with simulated annealing51 and involving both translational and rotational

moves. Several convergence tests were carried out by varying the parameters mentioned

above and it was found that the resulting energies barely changed within the error bar

associated to the reference calculation.
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4) Additional Figures and Table
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Figure S3: Radius of Gyration (RG), Lindemann Index (LI) and Electrostriction
of H2/D2 molecules, from PsAt PIMC calculations. (a) and (b): RG (Eq.7) in
Å. (c) and (d): LI (Eq.8). (e) and (f): Electrostriction (percentage of H2-H2 density in
the repulsive region of H2-H2 potential), additionally computed within the RigRot (DMC)
approach (dotted lines, empty circles). For (H2)nCs+ (left panels), molecules are quite
delocalized and fluid for n < 12 (large RG and LI). At n = 12 LI decreases indicating that
the cluster becomes solid-like. For n > 15 there appear nearly two sets of values for the
RG, associated to the inner and outer cluster shells. Electrostriction increases with n up to
completion of the first solvation shell. For (D2)nCs+ (right panels), RG are smaller (higher
localization) as well as LI, particularly for n = 14 and n > 16, suggesting that deuterated
clusters are solid-like for these sizes. Still, (D2)14Cs+ is floppier than (D2)12Cs+, as seen by
the more dispersed LI values and the three-dimensional probability distributions shown on
the right margin.
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Figure S4: Classical evaporation energies and structures of the most stable
(H2)nCs+ clusters: Classical evaporation energies, ∆En = En−1 − En, where En refers
to the minimum of the (H2)nCs+ PES, within the rigid rotor (RigRot, in red) and the pseu-
doatom (PsAt, in black) approximations. The special stability of the n =12 and n =14
clusters is also clear at this level. Insets: Structures of the centers of mass of H2 molecules.
For n = 12 (lower-left inset), the H2 molecules form an icosahedron with the cation at
the center, this structure being the same within both approaches. The (H2)14Cs+ cluster
consists, within the PsAt approximation (lower-center inset), of 12 molecules forming two
parallel hexagons, rotated 30o one with respect to the other, the remaining two molecules be-
ing placed along the symmetry axis above and below the hexagons (D6d symmetry, Kasper
Z14 polyhedron52). Within the RigRot approach, this structure distorts to one of lower
symmetry, where the six molecules forming the original hexagons do not reside in a common
plane anymore (upper-right inset).
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Table S2: Artificial modification of the VNC component (Eq.2) of the H2-Cs+ interac-

tion (remaining parameters from Table S1 unchanged). r
⊥,‖
e and ε⊥,‖ are balanced in

order to keep the same long range behavior. Resulting equilibrium properties of the
total H2-Cs+ PES are re and De (T-shape configuration).

r⊥e (Å) r
‖
e (Å) ε⊥ (meV) ε‖ (meV) re (Å) De (meV)

Modification 1 3.57 3.61 31.53 43.99 3.39 54.51
Modification 2 3.31 3.49 42.65 59.51 3.15 71.27

Figure S5: Sensitivity of (H2)nCs+ properties to variations of the H2-Cs+ potential
(Table S2) with respect to the present PES (RigRot DMC calculations): (a) As compared
with Fig.1 of the main article, evaporation energies keep a clear maximum at n=12 but the peak
at n =14 disappears; (b) As compared with Fig. 4 of the main article, Modification 2 leads to a
distinct shell structure with 12 molecules in the first layer whereas for Modification 1 structures
are more diffuse with a first layer containing 14-15 molecules.
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(12) Lombardi, A.; Pirani, F.; Laganà, A.; Bartolomei, M. Energy Transfer Dynamics and Kinetics

of Elementary Processes (Promoted) by Gas-Phase CO2-N2 Collisions: Selectivity Control by

the Anisotropy of the Interaction. J. Comp. Chem. 2016, 37, 1463–1475.

(13) Bartolomei, M.; Carmona-Novillo, E.; Hernández, M. I.; Campos-Mart́ınez, J.; Hernández-

Lamoneda, R. Long Range Interaction for Dimers of Atmospheric Interest: Dispersion, In-

duction and Electrostatic Contributions for O2-O2, N2-N2 and O2-N2. J. Comp. Chem. 2011,

32, 279–290.

(14) Pirani, F.; Albert́ı, M.; Castro, A.; Moix Teixidor, M.; Cappelletti, D. Atom-Bond Pairwise

Additive Representation For Intermolecular Potential Energy Surfaces. Chem. Phys. Lett.

2004, 394, 37–44.

(15) Pirani, F.; Brizi, S.; Roncaratti, L.; Casavecchia, P.; Cappelletti, D.; Vecchiocattivi, F. Be-

yond the Lennard-Jones Model: a Simple and Accurate Potential Function Probed by High

Resolution Scattering Data Useful for Molecular Dynamics Simulations. Phys. Chem. Chem.

Phys 2008, 10, 5489–5503.

(16) Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Absolute Scale Determination for Pho-

toabsorption Spectra and the Calculation of Molecular Properties Using Dipole Sum Rules.

Chem. Phys. 1997, 223, 59–98.

(17) Hirschfelder, J. Intermolecular Forces; Wiley Interscience, 1967.

(18) Aquilanti, V.; Cappelletti, D.; Pirani, F. Range and Strength of Interatomic Forces: Dispersion

and Induction Contributions to the Bonds of Dications and of Ionic Molecules. Chem. Phys.

1996, 209, 299–311, and references therein.

S16



(19) Patkowski, K.; Cencek, W.; Jankowski, P.; Szalewicz, K.; Mehl, J.; Garberoglio, G.; Har-

vey, A. H. Potential Energy Surface for Interactions between Two Hydrogen Molecules. J.

Chem. Phys. 2008, 129, 094304.

(20) Silvera, I. F.; Goldman, V. V. Isotropic Inter-Molecular Potential for H2 and D2 in Solid and

Gas Phases. J. Chem. Phys. 1978, 69, 4209–4213.

(21) Diep, P.; Johnson, J. K. An Accurate H2–H2 Interaction Potential from First Principles. J.

Chem. Phys. 2000, 112, 4465–4473, (Erratum: 2000, 113, 3480-3481).

(22) Liu, M. M.; Wu, M. S.; Han, H. L.; Shi, T. Y. Hyperspherical Coupled Channel Calculations

of Energy and Structure of 4He-4He-Li+ and its isotopic combination. J. Chem. Phys. 2016,

145, 034304.

(23) Rastogi, M.; Leidlmair, C.; An der Lan, L.; Ortiz de Zárate, J.; Pérez de Tudela, R.;
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