

Pressure induced multi-centre bonding and metal-insulator transition in PtAl₂

P. Modak* and Ashok K. Verma

High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre,
Trombay, Mumbai-400085, India

*Corresponding author: pmodak@barc.gov.in

SUPPLEMENTARY MATERIAL

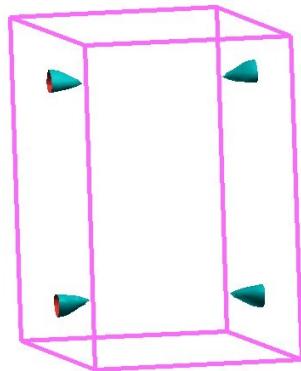
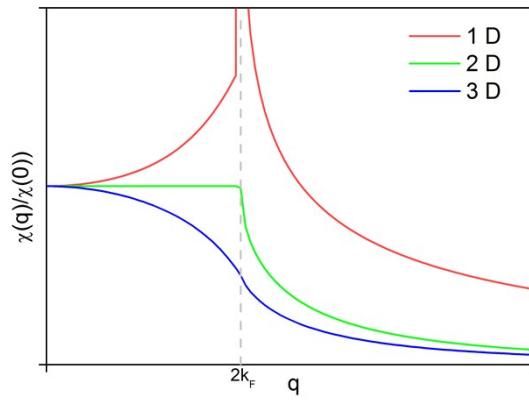
Lindhard susceptibility: According to non-interacting Fermi gas model the Lindhard susceptibility function can be written as,

$$\chi_0(\vec{q}, \omega) = \frac{2}{\hbar} \int d\vec{k} f_{\vec{k}} (1 - f_{\vec{k}'}) \left[\frac{1}{\omega + (\varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'}) + i\eta} - \frac{1}{\omega - (\varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'}) + i\eta} \right]$$

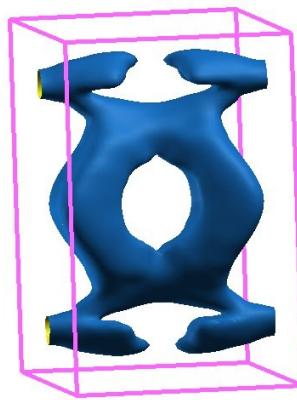
Where, ε is the electron's eigenvalue, $\vec{k}' = \vec{k} + \vec{q}$ and f is the Fermi-Dirac distribution function. After simplification the real and imaginary parts of this complex function can be written as,

$$Re[\chi_0(\vec{q}, \omega)] = \frac{2}{(2\pi)^2} \int_{BZ} \frac{f_{\vec{k}'} - f_{\vec{k}}}{\omega + (\varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'})} d\vec{k}$$

$$Im[\chi_0(\vec{q}, \omega)] = \frac{1}{2\pi} \int_{BZ} (f_{\vec{k}'} - f_{\vec{k}}) \delta(\omega + \varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'}) d\vec{k}$$

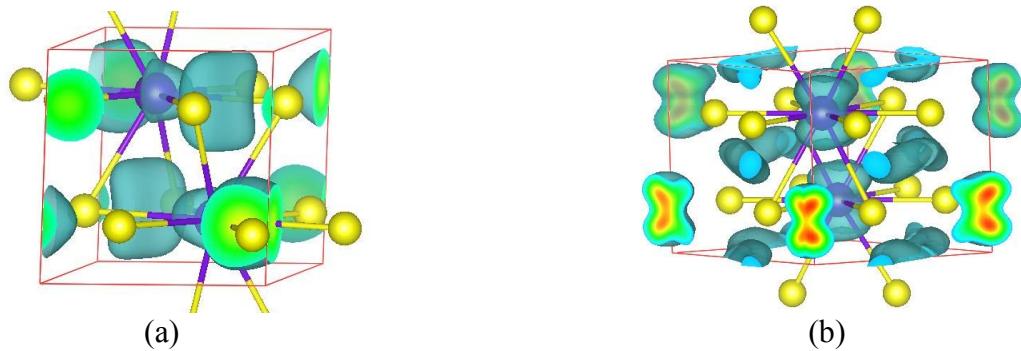


In the static limit ($\omega \rightarrow 0$) and $Im[\chi_0(\vec{q}, \omega)] = 0$; using rescaled coordinates $q \rightarrow k/k_F$ (k_F is the Fermi wave vector), the Lindhard function in 1, 2 and 3 dimension can be written as,

$$Re \chi_0 \propto -\frac{1}{2q} \ln \left| \frac{1 + q/2}{1 - q/2} \right| \quad \text{for 1D}$$

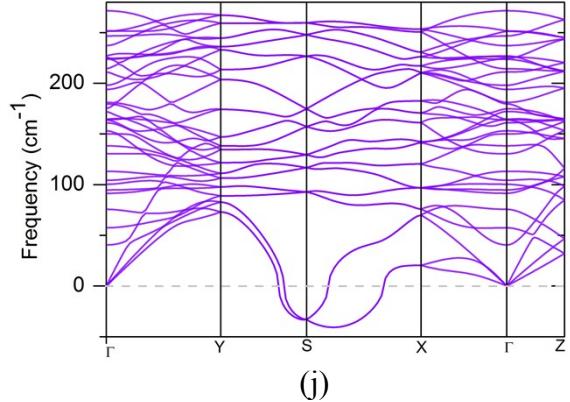
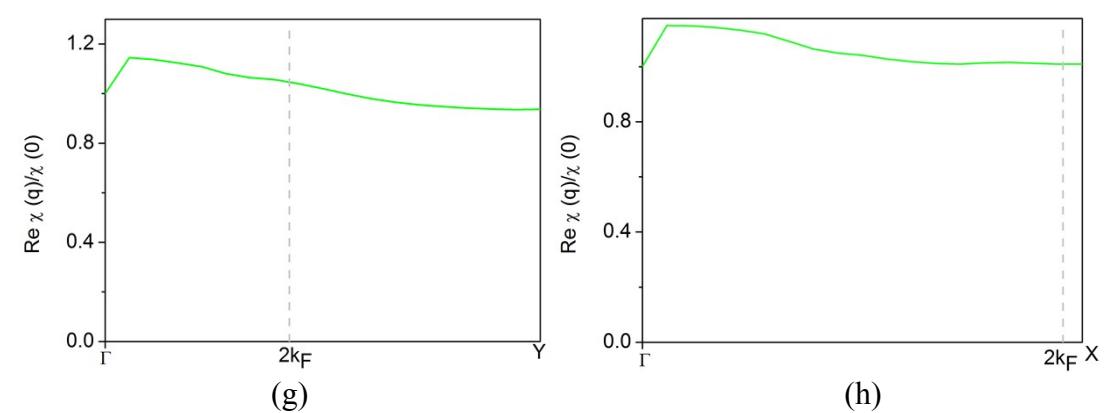
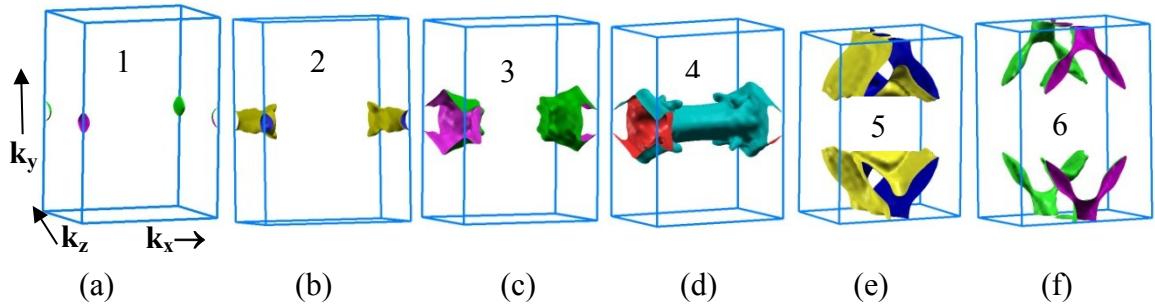

$$Re \chi_0 \propto \begin{cases} -1/E_F, & q < 2k_F \\ -(1 - \sqrt{1 - (2/q)^2}), & q \geq 2k_F \end{cases} \quad \text{for 2D}$$

$$Re \chi_0 \propto -\left[1 + \frac{1 - (q/2)^2}{q} \ln \left| \frac{1 + q/2}{1 - q/2} \right| \right] \quad \text{for 3D}$$

The graphical representation of $\chi(q)$ for different dimension is shown below. Hence, the electronic response function diverges at $q=2k_F$ for 1D systems and is discontinuous at $q=2k_F$ for 2D systems. Our system is quasi 2D perpendicular to **b**-crystallographic axis.



(a)

(b)

FIG. S1: Fermi surfaces for other two bands near 28 GPa in orthorhombic Pnma structure, horizontal direction is \mathbf{k}_z , vertical direction is \mathbf{k}_x and \mathbf{k}_y is perpendicular downward to the plane of paper.

FIG. S2: Band decomposed charge density isosurface for isovalue 0.06, (a) corresponds to top of the valence band near Z-point (b) corresponds to bottom of the conduction band near S-point. All the charge density computed within an energy window of ± 0.1 eV. Yellow (small) sphere represents Al-atoms and Violet (big) sphere represents Pt-atoms.

FIG. S3: Fermi surface (FS), electronic susceptibility and phonons of PtIn_2 in the Pnma phase near Pnma to C2/m transition. (a-f) Fermi sheets corresponding to different bands, (g-i) electronic susceptibility along different high symmetry direction of BZ, and (j) phonon dispersions along some high symmetry directions of BZ.