Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

1

Electronic Supplementary Information

Fluorescence quenching by photoinduced electron transfer between

7-methoxycoumarin and guanine base facilitated by hydrogen bond:

an *in silico* study

Wutthinan Thongyod^{a,b}, Chittanon Buranachai^{a,b}, Teparksorn Pengpan^a and

Chutintorn Punwong^{a*}

^aDepartment of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112,

Thailand

^bCenter of Excellence for Trace Analysis and Biosensor, Prince of Songkla University,

Songkhla 90112, Thailand

*Corresponding author e-mail address: chutintorn@gmail.com

This file replaces the version originally published on the 15th of July 2019. The labels in Figure S1 have been modified.

Calculation of spectra

The area and height of the spectrum is related to the population on S_0 for absorption (and to the population on S_1 and S_2 for emission from these excited states), the transition dipole moment, and the energy gap between the initial state (S_i) and the final state (S_f). Therefore, a spectrum is calculated as

$$I(v,t) \propto \sum_{I \in S_i} n_I(t) \times \left| \left\langle \psi_{S_f}(r; \overline{R_I}(t) \middle| \vec{\mu} \middle| \psi_{S_i}(r; \overline{R_I}(t) \middle) \right|^2 \times \left(\frac{\left| E_{S_i} - E_{S_f} \right|}{h} \right)^3$$

where the sum is limited by the trajectory basis functions (TBFs) that propagating on S₀ for absorption or on S₁ and S₂ for emission from these excited states, $n_I(t)$ is population of the *I*th TBF as calculated from inner product of wave function coefficient, ψ_{S_i/S_f} is S_i/S_f electronic wave function, $\vec{\mu}_{if}$ is S_i/S_f transition dipole moment operator, $\overline{R_I}(t)$ is the center of the Gaussian wave packet for the *I*th TBF and E_{S_i/S_f} is the electronic energy on the S_i/S_f state.

Fig. S1. Averaged (over ten initial conditions) S₂ population decay of free 7MC in vacuum (a), in chloroform (b) and in water (c) obtained from direct dynamics simulations. Error bars are given as standard error of the mean.

Fig. S2. Relative potential energy variation along H-bond length (d_1) in vacuum (a), in chloroform (b) and in water (c) on S₀ (solid black lines), S₁ (dotted red lines) and S₂ (dashed blue lines)

Fig. S3. Water molecules disrupt the H-bonding interaction between 7MC and Gua (this figure is rendered from VMD program¹, the cut-off distance and angle are 3.0 Å and 20°, respectively)

Fig. S4. Relative S₂-free energy curve as a function of the H-bond length (d_1) between 7MC and Gua in vacuum (red solid line), in chloroform (green dashed line) and in water (blue dotted line) obtained from the umbrella sampling technique² with the weighted histogram analysis method.³

Fig. S5. 2-D contour plots of the time-resolved emission spectra of H-bonded 7MC-complex for emission from S_1 (a) and S_2 (b) in vacuum; emission from S_1 (c) and S_2 (d) in chloroform; emission from S_1 (e) and S_2 (f) in water. The integrated emission spectra (g) and timeresolved total fluorescence emission (h) of free 7MC in vacuum, water and chloroform are shown in red, blue and green colors, respectively, with emissions from S_1 represented as solid lines and emission from S_2 represented as dashed lines.

Fig. S6. Averaged (over ten initial conditions) S_2 population decay of H-bonded 7MCcomplex in vacuum (a), in chloroform (b) and in water (c) obtained from direct dynamics simulations. Error bars are given as standard error of the mean.

References

- 1. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38, 27-38.
- 2. G. M. Torrie and J. P. Valleau, J. Comput. Phys., 1977, 23, 187-199.
- S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen and P. A. Kollman, J. Comput. Chem., 1992, 13, 1011-1021.