## Electronic Supplementary Information

## PET and FRET Utility of an Amino Acid Pair: Tryptophan and 4Cyanotryptophan

Ismail A. Ahmed ${ }^{1}$, Jeffrey M. Rodgers ${ }^{2}$, Christina Eng ${ }^{3}$, Thomas Troxler ${ }^{1,2}$, and Feng Gai ${ }^{2}$, *<br>${ }^{1}$ Department of Biochemistry and Biophysics, ${ }^{2}$ Department of Chemistry, and ${ }^{3}$ Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

*Correspondence: gai@sas.upenn.edu; +1-215-573-6256 (F.G.)

## Experimental Methods

## Förster Distance Calculation

The Förster distance $\left(R_{0}\right)$ of the $\operatorname{Trp}$ (donor) and $4 \mathrm{CN}-\operatorname{Trp}^{1}$ (acceptor) FRET pair was calculated using the following equation: ${ }^{2}$
$R_{0}^{6}=\left(\frac{9000(\ln 10) \kappa^{2} Q_{D}}{128 \pi^{5} N \eta^{4}}\right) J(\lambda)$,
where $\kappa^{2}$ is the orientation factor, assumed to be $2 / 3, Q_{\mathrm{D}}$ is the fluorescence quantum yield of the donor in the absence of the acceptor which is 0.14 for $\operatorname{Trp}$ in water, ${ }^{3,4} N$ is the Avogadro's number, $\eta$ is the refractive index of the medium ( 1.33 for water), and $J(\lambda)$ is the overlap integral, determined by the following equation: ${ }^{2}$
$J(\lambda)=\int_{0}^{\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d \lambda$,
where $F_{\mathrm{D}}(\lambda)$ is the area-normalized emission spectrum of the donor and $\varepsilon_{\mathrm{A}}(\lambda)$ is the wavelengthdependent molar absorption coefficient of the acceptor.

## Stern-Volmer Titration and Numerical Fitting

Static fluorescence quenching experiments ( $\lambda_{\mathrm{ex}}=330 \mathrm{~nm}$ ) was carried out using free 4CNI-3AA and NATA. To determine the underlying quenching rate ${ }^{5}$, we employed a diffusion model as described in detail elsewhere ${ }^{6,7}$ to numerically fit the experimental Stern-Volmer curve (Figure 4 in the main text). Briefly, the decaying fluorescence signal $I(t)$ is described by:
$I(t)=I_{0} \exp \left(-\frac{t}{\tau_{0}}-C_{Q}^{0} \int_{0}^{t} k\left(t^{\prime}\right) d t^{\prime}\right)$,
where $\tau_{0}$ is the fluorescence lifetime of the fluorophore, $C_{Q}^{0}$ is the quencher bulk concentration, and $k(t)$ is the time-dependent quenching rate which is calculated using:
$k(t)=\frac{4 \pi}{C_{Q}^{0}} \int_{a_{0}}^{\infty} r^{2} k_{Q}(r) C_{Q}(r, t) d r$,
In the above equation, ${ }_{Q}(r, t)$ is the concentration of quencher at distance $r$ from the fluorophore at time $t$, and $k_{\mathrm{Q}}(r)$ is the distance-dependent quenching rate, defined as: ${ }^{2}$
$k_{Q}(r)=k_{0} e^{-\beta\left(r-a_{0}\right)}$,
where $k_{0}$ is the quenching rate when the pair are in van der Waals contact (when $r=a_{0}$ ), and $\beta$ is a constant. For this study, the value of $a_{0}$ was set to $7.0 \AA$, which corresponds to the sum of the
van der Waals radii of two tryptophan sidechains. By defining a normalized concentration of the quencher as:
$y(r, t)=C_{Q}(r, t) / C_{Q^{\prime}}^{0}$
we can model the time- and distance-dependent quenching using the following equation:
$\frac{\partial}{\partial t} y(r, t)=-D \nabla^{2} y(r, t)-k_{Q}(r) y(r, t)$,
We numerically solved for $C_{Q}(r, t)$ using the following initial conditions and boundary conditions:

$$
\begin{align*}
& y(r, t=0)=1,  \tag{S8}\\
& \left(\frac{\partial}{\partial t} y(r, t)\right)_{r=a_{0}}=0,  \tag{S9}\\
& \lim _{r \rightarrow \infty} y(r, t)=1, \tag{S10}
\end{align*}
$$

and subsequently obtained $k(t)$ and $I(t)$ for each bulk quencher concentration $C_{Q}^{0}$. For the SternVolmer data presented in Figure 4, the best fit yielded the following parameters: $k_{0}=6.8 \mathrm{~ns}^{-1}$, $\beta=1.3 \AA^{-1}$, and $a_{0}=7.0 \AA$.

## Molecular Dynamics Simulations

Molecular dynamics (MD) simulations on the 4CN-Trp-Trp peptide were carried out to characterize its conformational distribution in aqueous solution. First, the force field parameters for the 4 -cyanoindole moiety were determined using the Force Field Toolkit Plugin ${ }^{8}$ v1.1 for VMD $^{9}$ v1.9.4 with the initial charge, bond, and angle parameters from CHARMM36 ${ }^{10}$ and CGenFF v4.1 for Small Molecule Drug Design. ${ }^{11}$ The peptide model was built using Vega ZZ ${ }^{12}$ v3.1.1 with an initial structure of a fully extended conformation $\left(\phi=\varphi=180^{\circ}\right)$ and then solvated using the Automatic PSF Generation Plugin v.1.3 in VMD. Simulations were carried out using the NAMD ${ }^{13}$ v.2.12 software package. Following a 1 ns equilibration run at 298 K and 1 atm in the NPT ensemble, subsequent production runs totaling 150 ns were performed on the equilibrated system at 298 K in the NVT ensemble. A trajectory was built by saving a snapshot every 500 fs, resulting in 300,000 total frames. Analysis of the MD trajectory was accomplished using VMD; for each frame, the minimum distance between any atoms in the 4-cyanoindole ring and the indole ring in the peptide was determined and used for constructing the distance distribution plot.

Table S1. Fluorescence lifetime ( $\tau$ ) and relative amplitude (A) determined from fitting the fluorescence decay of each peptide in Figure S1 to a single or biexponential function. The data for 4 CN -Trp-Met were taken from Ref. 1.

| Peptide Name | Peptide Sequence | $\boldsymbol{\tau}(\mathbf{n s})$ | A (\%) |
| :---: | :---: | :---: | :---: |
| 4CN-Trp-Gly | 4CN-Trp-G | 12.8 | 100 |
| 4CN-Trp-His | 4CN-Trp-H | 12.5 | 100 |
| 4CN-Trp-Arg | 4CN-Trp-R | 12.5 | 100 |
| 4CN-Trp-Ser | 4CN-Trp-S | 12.6 | 100 |
| 4CN-Trp-Glu | 4CN-Trp-E | 12.6 | 100 |
| 4CN-Trp-Met | 4CN-Trp-M | 12.2 | 100 |
| 4CN-Trp-Phe | 4CN-Trp-FAAKKK | 11.5 | 100 |
| 4CN-Trp-Tyr | 4CN-Trp-YAAKKK | 10.5 | 100 |
| 4CN-Trp-Trp | 4CN-Trp-WAAKKK | 4.1 | 64 |
|  |  | 0.3 | 36 |



Figure S1. Absorption spectra of Gly-Trp-Gly $(33 \mu \mathrm{M})$ and 4CN-Trp-Gly $(33 \mu \mathrm{M})$ in water, as indicated.


Figure S2. Fluorescence decay kinetics of 4CN-Trp-X peptides, as indicated. In each case, the smooth black line corresponds to the best fit of the respective data to a single-exponential or a biexponential function and the resultant lifetime(s) is given in Table S1. Residuals of the fits are on top of each respective panel.


Figure S3. Fluorescence decay kinetics of 4CN-Trp-Gly, 4CN-Trp-Pro-Pro-Trp, 4CN-Trp-ProTrp, and 4 CN -Trp-Trp, as indicated. The smooth line in each case correspond to the best fit of the data to either a single-exponential function (4CN-Trp-Gly and 4CN-Trp-Pro-Pro-Trp) or a biexponential function (4CN-Trp-Pro-Trp and 4CN-Trp-Trp) and the resultant lifetime(s) are listed in Table 1 of the main text.


Figure S4. The trajectory of the separation distance between the two fluorophores in the 4 CN -Trp-Trp peptide obtained from the MD simulations.


Figure S5. Representative structures of the two conformational populations of the $4 \mathrm{CN}-\mathrm{Trp}-\mathrm{Trp}$ peptide. The distances between the 4-cyanoindole and indole moieties are $2.96 \AA(\mathrm{~A})$ and $6.62 \AA$ (B), respectively.

## References

1. M. R. Hilaire, I. A. Ahmed, C. W. Lin, H. Jo, W. F. DeGrado and F. Gai, Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 6005-6009.
2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Springer: New York, USA, 2nd edn. 1999.
3. R. N. Chen, Anal. Lett., 1967, 1, 35-42.
4. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, Phys. Chem. Chem. Phys., 2009, 11, 9850-60.
5. B. N. Markiewicz, D. Mukherjee, T. Troxler and F. Gai, J. Phys. Chem. B, 2016, 120, 936944.
6. J. R. Lakowicz, B. Zelent, I. Gryczynski, J. Kusba and M. L. Johnson, Photochem. Photobiol., 1994, 60, 205-214.
7. M. R. Mintzer, T. Troxler and F. Gai, Phys. Chem. Chem. Phys., 2015, 17, 7881-7887.
8. C. G. Mayne, J. Saam, K. Schulten, E. Tajkhorshid and J. C. Gumbart, J. Comput. Chem. 2013, 34, 2757-2770.
9. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.
10. R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig and A. D. MacKerell, J. Chem. Theory Comput., 2012, 8, 3257-3273.
11. K. Vanommeslaeghe, E. Hatcher, S. K. Acharya, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov and A. D. J. Mackarell, J. Comput. Chem., 2010, 31, 671-690.
12. A. Pedretti, L. Villa and G. Vistoli, J. Mol. Graph. Model., 2002, 21, 47-49.
13. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé and K. Schulten, J. Comput. Chem., 2005, 26, 1781-1802.
