Electronic Supplementary Information

PET and FRET Utility of an Amino Acid Pair: Tryptophan and 4-Cyanotryptophan

Ismail A. Ahmed¹, Jeffrey M. Rodgers², Christina Eng³, Thomas Troxler^{1,2}, and Feng Gai^{2,*}

¹Department of Biochemistry and Biophysics, ²Department of Chemistry, and ³Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

*Correspondence: gai@sas.upenn.edu; +1-215-573-6256 (F.G.)

Experimental Methods

Förster Distance Calculation

The Förster distance (R_0) of the Trp (donor) and 4CN-Trp¹ (acceptor) FRET pair was calculated using the following equation:²

$$R_0^6 = \left(\frac{9000(ln10)\kappa^2 Q_D}{128\pi^5 N\eta^4}\right) J(\lambda), \tag{S1}$$

where κ^2 is the orientation factor, assumed to be 2/3, Q_D is the fluorescence quantum yield of the donor in the absence of the acceptor which is 0.14 for Trp in water,^{3,4} N is the Avogadro's number, η is the refractive index of the medium (1.33 for water), and $J(\lambda)$ is the overlap integral, determined by the following equation:²

$$J(\lambda) = \int_{0}^{\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d\lambda,$$
(S2)

where $F_D(\lambda)$ is the area-normalized emission spectrum of the donor and $\varepsilon_A(\lambda)$ is the wavelengthdependent molar absorption coefficient of the acceptor.

Stern-Volmer Titration and Numerical Fitting

Static fluorescence quenching experiments ($\lambda_{ex} = 330$ nm) was carried out using free 4CNI-3AA and NATA. To determine the underlying quenching rate⁵, we employed a diffusion model as described in detail elsewhere^{6,7} to numerically fit the experimental Stern-Volmer curve (Figure 4 in the main text). Briefly, the decaying fluorescence signal I(t) is described by:

$$I(t) = I_0 exp\left(-\frac{t}{\tau_0} - C_Q^0 \int_0^t k(t') dt'\right),$$
(S3)

where τ_0 is the fluorescence lifetime of the fluorophore, C_Q^0 is the quencher bulk concentration, and k(t) is the time-dependent quenching rate which is calculated using:

$$k(t) = \frac{4\pi}{C_Q^0} \int_{a_0}^{\infty} r^2 k_Q(r) C_Q(r, t) dr,$$
(S4)

In the above equation, $C_Q(r,t)$ is the concentration of quencher at distance *r* from the fluorophore at time *t*, and $k_Q(r)$ is the distance-dependent quenching rate, defined as:²

$$k_{Q}(r) = k_{0}e^{-\beta(r-a_{0})},$$
(S5)

where k_0 is the quenching rate when the pair are in van der Waals contact (when $r = a_0$), and β is a constant. For this study, the value of a_0 was set to 7.0 Å, which corresponds to the sum of the

van der Waals radii of two tryptophan sidechains. By defining a normalized concentration of the quencher as:

$$y(r,t) = C_Q(r,t)/C_Q^0,$$
(S6)

we can model the time- and distance-dependent quenching using the following equation:

$$\frac{\partial}{\partial t} y(r,t) = -D\nabla^2 y(r,t) - k_Q(r)y(r,t),$$
(S7)

We numerically solved for $C_Q(r,t)$ using the following initial conditions and boundary conditions:

$$y(r,t=0) = 1,$$
 (S8)

$$\left(\frac{\partial}{\partial t}y(r,t)\right)_{r=a_0} = 0,\tag{S9}$$

$$\lim_{r \to \infty} y(r,t) = 1,$$
(S10)

and subsequently obtained k(t) and I(t) for each bulk quencher concentration C_Q^0 . For the Stern-Volmer data presented in Figure 4, the best fit yielded the following parameters: $k_0 = 6.8 \text{ ns}^{-1}$, $\beta = 1.3 \text{ Å}^{-1}$, and $a_0 = 7.0 \text{ Å}$.

Molecular Dynamics Simulations

Molecular dynamics (MD) simulations on the 4CN-Trp-Trp peptide were carried out to characterize its conformational distribution in aqueous solution. First, the force field parameters for the 4-cyanoindole moiety were determined using the Force Field Toolkit Plugin⁸ v1.1 for VMD⁹ v1.9.4 with the initial charge, bond, and angle parameters from CHARMM36¹⁰ and CGenFF v4.1 for Small Molecule Drug Design.¹¹ The peptide model was built using Vega ZZ¹² v3.1.1 with an initial structure of a fully extended conformation ($\phi = \varphi = 180^{\circ}$) and then solvated using the Automatic PSF Generation Plugin v.1.3 in VMD. Simulations were carried out using the NAMD¹³ v.2.12 software package. Following a 1 ns equilibration run at 298 K and 1 atm in the NPT ensemble, subsequent production runs totaling 150 ns were performed on the equilibrated system at 298 K in the NVT ensemble. A trajectory was built by saving a snapshot every 500 fs, resulting in 300,000 total frames. Analysis of the MD trajectory was accomplished using VMD; for each frame, the minimum distance between any atoms in the 4-cyanoindole ring and the indole ring in the peptide was determined and used for constructing the distance distribution plot.

exponential function. The data for 4CN-11p-Met were taken from Kel. 1.			
Peptide Name	Peptide Sequence	τ (ns)	A (%)
4CN-Trp-Gly	4CN-Trp-G	12.8	100
4CN-Trp-His	4CN-Trp-H	12.5	100
4CN-Trp-Arg	4CN-Trp-R	12.5	100
4CN-Trp-Ser	4CN-Trp-S	12.6	100
4CN-Trp-Glu	4CN-Trp-E	12.6	100
4CN-Trp-Met	4CN-Trp-M	12.2	100
4CN-Trp-Phe	4CN-Trp-FAAKKK	11.5	100
4CN-Trp-Tyr	4CN-Trp-YAAKKK	10.5	100
4CN-Trp-Trp	4CN-Trp-WAAKKK	4.1	64
		0.3	36

Table S1. Fluorescence lifetime (τ) and relative amplitude (A) determined from fitting the fluorescence decay of each peptide in Figure S1 to a single or biexponential function. The data for 4CN-Trp-Met were taken from Ref. 1.

Figure S1. Absorption spectra of Gly-Trp-Gly (33 μ M) and 4CN-Trp-Gly (33 μ M) in water, as indicated.

Figure S2. Fluorescence decay kinetics of 4CN-Trp-X peptides, as indicated. In each case, the smooth black line corresponds to the best fit of the respective data to a single-exponential or a biexponential function and the resultant lifetime(s) is given in Table S1. Residuals of the fits are on top of each respective panel.

Figure S3. Fluorescence decay kinetics of 4CN-Trp-Gly, 4CN-Trp-Pro-Trp, 4CN-Trp-Pro-Trp, and 4CN-Trp-Trp, as indicated. The smooth line in each case correspond to the best fit of the data to either a single-exponential function (4CN-Trp-Gly and 4CN-Trp-Pro-Pro-Trp) or a biexponential function (4CN-Trp-Pro-Trp and 4CN-Trp-Trp) and the resultant lifetime(s) are listed in Table 1 of the main text.

Figure S4. The trajectory of the separation distance between the two fluorophores in the 4CN-Trp-Trp peptide obtained from the MD simulations.

Figure S5. Representative structures of the two conformational populations of the 4CN-Trp-Trp peptide. The distances between the 4-cyanoindole and indole moieties are 2.96 Å (A) and 6.62 Å (B), respectively.

References

- 1. M. R. Hilaire, I. A. Ahmed, C. W. Lin, H. Jo, W. F. DeGrado and F. Gai, *Proc. Natl. Acad. Sci. U.S.A.*, 2017, **114**, 6005-6009.
- 2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Springer: New York, USA, 2nd edn. 1999.
- 3. R. N. Chen, Anal. Lett., 1967, 1, 35-42.
- 4. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850–60.
- 5. B. N. Markiewicz, D. Mukherjee, T. Troxler and F. Gai, J. Phys. Chem. B, 2016, 120, 936–944.
- 6. J. R. Lakowicz, B. Zelent, I. Gryczynski, J. Kusba and M. L. Johnson, *Photochem. Photobiol.*, 1994, **60**, 205–214.
- 7. M. R. Mintzer, T. Troxler and F. Gai, Phys. Chem. Chem. Phys., 2015, 17, 7881-7887.
- 8. C. G. Mayne, J. Saam, K. Schulten, E. Tajkhorshid and J. C. Gumbart, *J. Comput. Chem.* 2013, **34**, 2757–2770.
- 9. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38.
- 10. R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig and A. D. MacKerell, J. Chem. Theory Comput., 2012, 8, 3257–3273.
- K. Vanommeslaeghe, E. Hatcher, S. K. Acharya, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov and A. D. J. Mackarell, *J. Comput. Chem.*, 2010, **31**, 671–690.
- 12. A. Pedretti, L. Villa and G. Vistoli, J. Mol. Graph. Model., 2002, 21, 47-49.
- J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé and K. Schulten, J. Comput. Chem., 2005, 26, 1781–1802.