Supplementary information

Metal-free SERS substrate based on rGO-TiO₂-Fe₃O₄ nanohybrid: Contribution from interfacial charge transfer and magnetic controllability

Xin Jiang,[‡]^a Qinqin Sang,[‡]^a Ming Yang,^a Juan Du,^a Weie Wang,^a Libin

Yang,*a Xiaoxia Han^b and Bing Zhao*b

- ^aCollege of Pharmacy, Jiamusi University, Jiamusi 154007, People's Republic of China
- ^bState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
- *Corresponding authors. E-mail: ylb76@163.com (L.B. Y.); zhaob@mail.jlu.edu.cn (B. Z.)
- [‡]These authors contributed equally to this work.

The enhancement factor (EF) of rGO-TiO₂-Fe₃O₄ substrate is calculated according to the following equation:

EF = $(I_{SERS}/I_{NR}) \times (N_{NR}/N_{SERS}) = (I_{SERS}/I_{NR}) \times [(S_{laser} \times h \times C_{NR} \times N_A) / (S_{laser}/S_{MBA})]$ in which the I_{SERS} and I_{NR} represent the SERS (1×10⁻⁶ mol/L of 4-MBA adsorbed on rGO-TiO₂-Fe₃O₄ substrate) and normal Raman (0.1 mol/L of 4-MBA ethanol solution) intensities at 1594 cm⁻¹ respectively, and here the ratio of I_{SERS}/I_{NR} is about 37.7. The N_{NR} and N_{SERS} represent the numbers of 4-MBA molecules in 0.1 mol/L of solution sample and on rGO-TiO₂-Fe₃O₄ substrate adsorbed from 1×10⁻⁶ mol/L of solution, which are lying in the laser spot. The S_{laser} is the area of laser focused on the sample (the diameter of laser spot is 1 µm), and h is the effective depth of laser (17.88 µm). The C_{NR} is the concentration of 4-MBA used in normal Raman spectrum (0.1 mol/L). S_{MBA} is the area of 4-MBA molecule (6.9×10⁻¹³ m²) and N_A is the Avogadro constant. Therefore, the EF of rGO-TiO₂-Fe₃O₄ substrate is estimated to be about 2.7×10⁷.

Fig. S1 XRD patterns of rGO-TiO₂-Fe₃O₄ samples with different addition amount of FeSO₄ (a: Ti/Fe=1/5, b: Ti/Fe=1/10, c: Ti/Fe=1/15, d: Ti/Fe=1/20, e: Ti/Fe=1/25).

Fig. S2 The merged Fe, Ti, O and C elemental mapping image of single rGO-TiO₂-Fe₃O₄ nanohybrid.

Fig. S3 UV-vis DRS spectra of TiO_2 , rGO- TiO_2 and rGO- TiO_2 -Fe₃O₄ samples.

Fig. S4 SERS spectra of 4-MBA adsorbed on TiO_2 and different rGO-TiO₂ substrates.

Fig. S5 SERS spectra of 4-MBA adsorbed on TiO_2 and TiO_2 -Fe₃O₄ with the centrifugal separation treatment and magnetic separation treatment.

Fig. S6 SERS spectra of 4-MBA adsorbed on the recycled rGO-TiO₂ (A) and TiO₂ (B) substrates (eight adsorption/UV-cleaning cycles).

Fig. S7 SERS spectra of 4-MBA adsorbed on ten identical $rGO-TiO_2-Fe_3O_4$ substrates with the centrifugal separation treatment.

Fig. S8 SERS spectra of 6-MP adsorbed on TiO_2 , $rGO-TiO_2$ and $rGO-TiO_2$ -Fe₃O₄ substrates from 1 × 10⁻³ mol/L solution (A); SERS spectra of 6-MP adsorbed on rGO- TiO_2 -Fe₃O₄ substrates from different concentrations of 6-MP solution (B).

Fig. S9 SERS spectra of BPE adsorbed on TiO₂, rGO-TiO₂ and rGO-TiO₂-Fe₃O₄ substrates from 1×10^{-3} mol/L solution (A); SERS spectra of BPE adsorbed on rGO-TiO₂-Fe₃O₄ substrates from different concentrations of BPE solution (B).

Fig. S10 SERS spectra of PABA adsorbed on TiO₂, rGO-TiO₂ and rGO-TiO₂-Fe₃O₄ substrates from 1×10^{-3} mol/L solution (A); SERS spectra of PABA adsorbed on rGO-TiO₂-Fe₃O₄ substrates from different concentrations of PABA solution (B).