## **Supplementary Information for**

## Ab Initio Kinetics of the C<sub>2</sub>H<sub>2</sub> + NH<sub>2</sub> Reaction: A Revisited Study

Tam V.-T. Mai,<sup>1,2,\*</sup> and Lam K. Huynh<sup>3,\*</sup>

<sup>1</sup> Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.

<sup>2</sup> University of Science, Vietnam National University – HCMC, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City, Vietnam.

<sup>3</sup> International University, Vietnam National University – HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.

\*Corresponding authors.

## Contents

| <b>Table S1</b> : The optimized geometries, electronic energies at 0 K ( $E_{elec}^{0K}$ ), zero-point energy (ZPE)                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| corrections, harmonic wavenumbers of the species involved, calculated at W1U level of theory for the title reaction                                                                                                                                                                                                                                                                                                                                      |
| <b>Table S2:</b> High-pressure rate constants for the $C_2H_2 + NH_2$ system calculated at W1U method <sup>[a]</sup> 9                                                                                                                                                                                                                                                                                                                                   |
| <b>Table S3:</b> $k(T, P)_{tot}$ (overall rate constants) for the C <sub>2</sub> H <sub>2</sub> + NH <sub>2</sub> $\rightarrow$ products, calculated at different pressures. 10                                                                                                                                                                                                                                                                          |
| <b>Table S4:</b> T1 diagnostics for the species involved in $C_2H_2 + NH_2$ reaction computed at CCSD(T)/cc-pVQZbased on the B3LYP/cc-pVTZ+d geometries.11                                                                                                                                                                                                                                                                                               |
| <b>Table S5:</b> Detailed kinetic submechanism in NASA format for the reaction $C_2H_2 + NH_2$ .12                                                                                                                                                                                                                                                                                                                                                       |
| <b>Table S6:</b> Reaction energies, $\Delta E_{rxn}$ , barrier heights, $\Delta V^{\ddagger}$ (including ZPE corrections), calculated at W1Umethod between NH <sub>2</sub> radical with several hydrocarbons.14                                                                                                                                                                                                                                          |
| Table S7: Comparison of the barrier height of the channels via TS1 and TS_abs at 0 K (including ZPE) obtained from the different levels of theory. Units are in kcal/mol. 14                                                                                                                                                                                                                                                                             |
| <b>Table S8:</b> Comparison of calculated thermodynamic properties of all structures related to the title reaction with literature data. Unit: $\Delta_f H^{298 \text{ K}}$ in kcal·mol <sup>-1</sup> , $S^{298 \text{ K}}$ in cal·mol <sup>-1</sup> ·K <sup>-1</sup> (NIST = Webbook NIST, webbook.nist.gov, ATcT = Active Thermochemical Tables <sup>5,6[a]</sup> )15                                                                                  |
| <b>Figure S1:</b> Reaction pathway scheme of the $C_2H_2 + NH_2$ reaction16                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Figure S2:</b> B3LYP/cc-pVTZ+d optimized geometries for the species involved in the $C_2H_2 + NH_2$ reaction.<br>All structures were obtained for the lowest-energy conformer of a given species. Bond lengths are in Å and angles are in degree (°). <sup>a</sup> From the work of Moskaleva <i>et al.</i> <sup>4</sup> ; <sup>b</sup> from the work of Kuchitsu <sup>12</sup> and <sup>c</sup> from the work of Herzberg <sup>13</sup>              |
| <b>Figure S3</b> : Geometrical parameters of <b>TS1</b> and <b>TS_abs</b> , optimized at B3LYP (black), M06-2X (blue), UCCSD (pink) and UCCSD(T) (red) with two basis sets, cc-pVTZ+d <sup>[a]</sup> and cc-pVDZ <sup>[b]</sup> . Units are in Å. 20                                                                                                                                                                                                     |
| <b>Figure S4:</b> Hindrance potentials for the species involved in the $C_2H_2 + NH_2$ reaction, calculated at B3LYP/6-311G(2d,d,p) level of theory                                                                                                                                                                                                                                                                                                      |
| <b>Figure S5:</b> IRC plot for the addition of NH <sub>2</sub> to C <sub>2</sub> H <sub>2</sub> (via TS1) calculated at B3LYP/cc-pVTZ+d level of theory. Distances are in Å                                                                                                                                                                                                                                                                              |
| <b>Figure S6:</b> Linear energy relationship (LER) between reaction energy, $\Delta E_{rxn}$ , and reaction barrier heights, $\Delta V^{\ddagger}$ , calculated at W1U level of theory (0 K): N-addition ( <b>a</b> ) and H-abstraction ( <b>b</b> ) reactions. Zero-point energy corrections were included. Note that there are two different sites, namely, terminal and non-terminal (denoted by the underlined carbons as in Fig. S6a) for propylene |
| <b>Figure S7:</b> Calculated rate constants, $k(T, P)$ , for the C <sub>2</sub> H <sub>2</sub> + NH <sub>2</sub> $\rightarrow$ products as a function of temperature at $P = 1$ torr                                                                                                                                                                                                                                                                     |
| <b>Figure S8:</b> Time-resolved species profiles for the $C_2H_2 + NH_2 \rightarrow products$ , simulated at $T = 1000$ K and $P = 760$ torr (a); $T = 298$ K and $P = 76000$ torr (b) and $T = 298$ K and $P = 1$ torr (c) using stochastic approach:<br>$[C_2H_2]/[N_2] = 10^{-3}$ , $[C_2H_2]_0 \gg [NH_2]_0$ and the numbers of trials = 10 <sup>6</sup> . The calculations were carried out using the full PES described in Figure 1 (in main text) |

| Snecies                       |   | Cart         | tesian coordinat | e            | $E^{0\mathrm{K}}_{elec}$ | ZPE       | Unscal               | led vibrational fre           | equencies <sup>[a]</sup> (cm <sup>-1</sup> ) |
|-------------------------------|---|--------------|------------------|--------------|--------------------------|-----------|----------------------|-------------------------------|----------------------------------------------|
| species                       |   |              | (Å)              |              | (Hartree)                | (Hartree) | Cliscal              |                               | queneres (em )                               |
| C <sub>2</sub> H <sub>2</sub> | 6 | 0.000000000  | 0.000000000      | 0.597916000  | -77.351957               | 0.026986  | 649.9072             | 649.9072                      | 764.6045                                     |
| $(D_{\infty h})$              | 1 | 0.000000000  | 0.000000000      | 1.658970000  |                          |           | 764.6045             | 2073.1196                     | 3420.0894                                    |
|                               | 6 | 0.000000000  | 0.000000000      | -0.597916000 |                          |           | 3523.4533            |                               |                                              |
|                               | 1 | 0.000000000  | 0.000000000      | -1.658970000 |                          |           | (612; 612; 730;      | 730; 1974; 3289; 3            | 374) <sup>1</sup>                            |
| NH <sub>2</sub>               | 7 | 0.000000000  | 0.000000000      | 0.142608000  | -55.902140               | 0.018950  | 1541.9570            | 3343.9041                     | 3432.4239                                    |
| $(C_{2v})$                    | 1 | 0.000000000  | 0.802809000      | -0.499128000 |                          |           | $(1497.3^2; 3219.4)$ | $4^2$ ; 3301.1 <sup>3</sup> ) |                                              |
|                               | 1 | 0.000000000  | -0.802809000     | -0.499128000 |                          |           |                      | . ,                           |                                              |
| Pre-complex                   | 7 | 2.362770000  | -0.000099000     | -0.000144000 | -133.258873              | 0.047886  | 70.8076              | 83.2654                       | 120.9008                                     |
| $(C_{2v})$                    | 1 | 2.995547000  | 0.807972000      | -0.000092000 |                          |           | 181.5667             | 228.4737                      | 683.2630                                     |
|                               | 1 | 2.998184000  | -0.806095000     | -0.000026000 |                          |           | 684.9784             | 857.0639                      | 862.9835                                     |
|                               | 6 | -1.011251000 | -0.000315000     | -0.000011000 |                          |           | 1536.0104            | 2057.4018                     | 3343.0461                                    |
|                               | 1 | 0.057552000  | -0.000701000     | -0.000181000 |                          |           | 3363.7453            | 3454.6567                     | 3491.1912                                    |
|                               | 6 | -2.208834000 | 0.000138000      | 0.000178000  |                          |           |                      |                               |                                              |
|                               | 1 | -3.270159000 | 0.000582000      | 0.000311000  |                          |           |                      |                               |                                              |
| Post-complex                  | 6 | -1.533619000 | -0.204116000     | -0.000003000 | -133.229403              | 0.052044  | 20.2642              | 140.4393                      | 336.5477                                     |
| $(C_s)$                       | 1 | -2.501597000 | -0.645268000     | 0.000027000  |                          |           | 392.7580             | 449.9968                      | 586.5183                                     |
|                               | 6 | -0.560415000 | 0.540156000      | -0.000024000 |                          |           | 646.5753             | 886.1141                      | 1628.4031                                    |
|                               | 1 | 1.531903000  | -0.662442000     | -0.837082000 |                          |           | 1630.1576            | 1886.0881                     | 3429.2736                                    |
|                               | 7 | 1.426196000  | -0.108322000     | 0.000004000  |                          |           | 3494.3238            | 3657.1201                     | 3660.1671                                    |
|                               | 1 | 2.017699000  | 0.709131000      | -0.001786000 |                          |           |                      |                               |                                              |
|                               | 1 | 1.532820000  | -0.659408000     | 0.838973000  |                          |           |                      |                               |                                              |
| TS_abs                        | 6 | -1.762588000 | 0.139297000      | -0.000046000 | -133.219851              | 0.048511  | -515.6749            | 82.7617                       | 112.1709                                     |
| $(C_s)$                       | 1 | -2.794814000 | 0.394488000      | -0.000048000 |                          |           | 326.7903             | 510.8597                      | 633.3006                                     |
|                               | 6 | -0.631585000 | -0.292814000     | 0.000062000  |                          |           | 653.2661             | 891.7770                      | 1523.1800                                    |
|                               | 1 | 0.931072000  | -0.626519000     | 0.000257000  |                          |           | 1619.7180            | 2006.0464                     | 2435.1257                                    |
|                               | 7 | 1.810389000  | -0.004084000     | 0.000027000  |                          |           | 3443.0589            | 3481.9539                     | 3573.9683                                    |
|                               | 1 | 1.777973000  | 0.591237000      | 0.823349000  |                          |           |                      |                               |                                              |
|                               | 1 | 1.778080000  | 0.590485000      | -0.823843000 |                          |           |                      |                               |                                              |
| TS1                           | 7 | -1.470123000 | -0.069752000     | -0.000006000 | -133.247578              | 0.049607  | -434.0626            | 147.2623                      | 263.0029                                     |
| $(C_s)$                       | 1 | -1.404641000 | -0.701606000     | 0.802838000  |                          |           | 539.7978             | 605.0456                      | 686.1956                                     |
|                               | 1 | -1.404621000 | -0.701672000     | -0.802796000 |                          |           | 739.7407             | 776.9018                      | 823.3555                                     |

**Table S1**: The optimized geometries, electronic energies at 0 K ( $E_{elec}^{0 \text{ K}}$ ), zero-point energy (ZPE) corrections, harmonic wavenumbers of the species involved, calculated at W1U level of theory for the title reaction.

| Species           |   | Cart         | tesian coordinat | e            | $E_{elec}^{0 \mathrm{K}}$ | ZPE       | Unsca      | led vibrational fre | quencies <sup>[a]</sup> (cm <sup>-1</sup> ) |
|-------------------|---|--------------|------------------|--------------|---------------------------|-----------|------------|---------------------|---------------------------------------------|
| species           |   |              | (A)              |              | (Hartree)                 | (Hartree) | Chieu      |                     | queneres (em )                              |
|                   | 6 | 0.537467000  | 0.601917000      | -0.000002000 |                           |           | 1547.2610  | 1917.5821           | 3382.5865                                   |
|                   | 1 | 0.238323000  | 1.622408000      | -0.000005000 |                           |           | 3393.9426  | 3475.5969           | 3476.5512                                   |
|                   | 6 | 1.301833000  | -0.345482000     | 0.000002000  |                           |           |            |                     |                                             |
|                   | 1 | 1.826002000  | -1.269474000     | 0.000005000  |                           |           |            |                     |                                             |
| TS2               | 6 | -1.336037000 | 0.091585000      | -0.068783000 | -133.225730               | 0.049028  | -1675.4296 | 371.1014            | 417.6667                                    |
| (C <sub>1</sub> ) | 1 | -1.922647000 | 0.988344000      | 0.124690000  |                           |           | 486.0595   | 618.1310            | 627.9075                                    |
|                   | 6 | -0.102434000 | -0.328779000     | -0.106871000 |                           |           | 858.8672   | 1070.8965           | 1172.9764                                   |
|                   | 1 | -0.903945000 | -0.994528000     | 0.598449000  |                           |           | 1635.9604  | 1785.1952           | 2280.7641                                   |
|                   | 7 | 1.172004000  | 0.108228000      | 0.080346000  |                           |           | 3067.6441  | 3485.0384           | 3642.7115                                   |
|                   | 1 | 1.336761000  | 1.107250000      | 0.088908000  |                           |           |            |                     |                                             |
|                   | 1 | 1.916629000  | -0.435503000     | -0.320547000 |                           |           |            |                     |                                             |
| TS3               | 6 | -1.337659000 | 0.066812000      | 0.002494000  | -133.246302               | 0.045394  | -780.2215  | 321.6548            | 343.0979                                    |
| (C <sub>1</sub> ) | 1 | -1.996672000 | -0.694484000     | -0.388672000 |                           |           | 464.7865   | 567.4944            | 739.4782                                    |
|                   | 6 | -0.044646000 | -0.106224000     | 0.014161000  |                           |           | 901.0108   | 991.8833            | 1092.2731                                   |
|                   | 1 | -1.769793000 | 0.970765000      | 0.410856000  |                           |           | 1147.2771  | 1434.9299           | 2055.3668                                   |
|                   | 7 | 1.183249000  | -0.115821000     | -0.076592000 |                           |           | 3143.0561  | 3226.8609           | 3496.4726                                   |
|                   | 1 | 2.071827000  | 1.320631000      | -0.264793000 |                           |           |            |                     |                                             |
|                   | 1 | 1.705724000  | -0.549698000     | 0.678823000  |                           |           |            |                     |                                             |
| TS4               | 6 | -1.301134000 | -0.167705000     | 0.028240000  | -133.293482               | 0.053138  | -638.1956  | 356.0744            | 430.0653                                    |
| (C <sub>1</sub> ) | 1 | -2.242555000 | -0.656938000     | -0.015096000 |                           |           | 508.4606   | 658.6957            | 853.2946                                    |
|                   | 6 | -0.133531000 | 0.407322000      | -0.006484000 |                           |           | 1063.1637  | 1171.6435           | 1336.8879                                   |
|                   | 1 | -0.063720000 | 1.498035000      | -0.022117000 |                           |           | 1639.3315  | 1679.2404           | 3027.4430                                   |
|                   | 7 | 1.131242000  | -0.200462000     | -0.090842000 |                           |           | 3439.9969  | 3527.7282           | 3632.6589                                   |
|                   | 1 | 1.135303000  | -1.180065000     | 0.151700000  |                           |           |            |                     |                                             |
|                   | 1 | 1.860269000  | 0.304504000      | 0.390871000  |                           |           |            |                     |                                             |
| TS5               | 6 | -1.354079000 | -0.143276000     | 0.003108000  | -133.228019               | 0.045686  | -596.7543  | 177.1261            | 421.0369                                    |
| (C <sub>1</sub> ) | 1 | -2.413744000 | -0.155650000     | 0.029403000  |                           |           | 457.0668   | 490.7359            | 518.1082                                    |
|                   | 6 | -0.153825000 | 0.021516000      | -0.003449000 |                           |           | 601.6659   | 683.0527            | 1076.4382                                   |
|                   | 1 | -0.125194000 | 1.976758000      | 0.065269000  |                           |           | 1198.1999  | 1628.9317           | 2165.7274                                   |
|                   | 7 | 1.188547000  | -0.117542000     | -0.085210000 |                           |           | 3474.4045  | 3534.8344           | 3626.5862                                   |
|                   | 1 | 1.547500000  | -0.966630000     | 0.326364000  |                           |           |            |                     |                                             |
|                   | 1 | 1.719030000  | 0.698877000      | 0.177479000  |                           |           |            |                     |                                             |
| TS6               | 6 | 1.137402000  | -0.319040000     | -0.006426000 | -133.234255               | 0.048682  | -1822.2549 | 115.4953            | 658.4294                                    |
| (C <sub>1</sub> ) | 1 | 2.158139000  | 0.040856000      | 0.111109000  |                           |           | 793.3455   | 934.4426            | 1008.5208                                   |

| Species           |   | Cart         | esian coordinate | e            | $E_{elec}^{0 \text{ K}}$ | ZPE       | Unsca      | led vibrational fre | quencies <sup>[a]</sup> (cm <sup>-1</sup> ) |
|-------------------|---|--------------|------------------|--------------|--------------------------|-----------|------------|---------------------|---------------------------------------------|
| species           |   |              | (Å)              |              | (Hartree)                | (Hartree) |            |                     | queneres (em )                              |
|                   | 6 | 0.048918000  | 0.542543000      | -0.015166000 |                          |           | 1065.0947  | 1114.9543           | 1159.1477                                   |
|                   | 1 | -0.039380000 | 1.624956000      | -0.011143000 |                          |           | 1376.4832  | 1414.2525           | 2010.2182                                   |
|                   | 7 | -1.016090000 | -0.267891000     | -0.018183000 |                          |           | 3110.9612  | 3147.7804           | 3459.6893                                   |
|                   | 1 | -0.157772000 | -1.181416000     | -0.007085000 |                          |           |            |                     |                                             |
|                   | 1 | -1.966280000 | 0.049821000      | 0.163948000  |                          |           |            |                     |                                             |
| TS7               | 6 | -1.273241000 | 0.303984000      | 0.022491000  | -133.234730              | 0.050603  | -1248.2614 | 318.1868            | 458.1802                                    |
| (C <sub>1</sub> ) | 1 | -2.222891000 | -0.142782000     | -0.257094000 |                          |           | 534.6196   | 672.3388            | 916.8117                                    |
|                   | 6 | -0.111359000 | -0.342381000     | -0.149786000 |                          |           | 1094.0254  | 1171.7833           | 1254.9531                                   |
|                   | 1 | -0.825999000 | -0.770118000     | 0.777518000  |                          |           | 1610.0249  | 1636.0766           | 2219.6038                                   |
|                   | 7 | 1.155319000  | 0.083915000      | 0.053214000  |                          |           | 3133.5027  | 3510.0225           | 3681.8710                                   |
|                   | 1 | 1.354018000  | 1.074937000      | 0.072177000  |                          |           |            |                     |                                             |
|                   | 1 | 1.915240000  | -0.519060000     | -0.201333000 |                          |           |            |                     |                                             |
| <b>TS8</b>        | 6 | 0.070607000  | 0.021004000      | -0.000001000 | -133.248458              | 0.045243  | -788.4878  | 110.1815            | 446.3989                                    |
| (C <sub>1</sub> ) | 1 | -0.052100000 | 1.881860000      | 0.000052000  |                          |           | 557.3263   | 574.3921            | 726.3712                                    |
|                   | 7 | 1.263305000  | -0.241252000     | -0.000017000 |                          |           | 888.3457   | 1010.2280           | 1043.5216                                   |
|                   | 1 | 1.899139000  | 0.551068000      | 0.000002000  |                          |           | 1133.2676  | 1433.6803           | 2023.8069                                   |
|                   | 6 | -1.253126000 | -0.118837000     | 0.000007000  |                          |           | 3160.9322  | 3252.0048           | 3499.1308                                   |
|                   | 1 | -1.797538000 | -0.078555000     | -0.931474000 |                          |           |            |                     |                                             |
|                   | 1 | -1.797521000 | -0.078612000     | 0.931501000  |                          |           |            |                     |                                             |
| TS9               | 6 | -0.052649000 | 0.427296000      | 0.000043000  | -133.290056              | 0.051689  | -1199.6210 | 323.3253            | 436.4390                                    |
| $(C_s)$           | 1 | 0.001176000  | 1.530877000      | 0.000198000  |                          |           | 507.9475   | 751.5753            | 951.2621                                    |
|                   | 7 | -1.173434000 | -0.164295000     | -0.000159000 |                          |           | 988.5669   | 1143.2130           | 1416.9971                                   |
|                   | 1 | -2.040550000 | -0.636235000     | -0.000369000 |                          |           | 1473.9770  | 1508.5968           | 2895.7541                                   |
|                   | 6 | 1.200203000  | -0.224540000     | 0.000120000  |                          |           | 3131.2863  | 3241.1256           | 3918.9029                                   |
|                   | 1 | 2.121291000  | 0.343807000      | 0.000319000  |                          |           |            |                     |                                             |
|                   | 1 | 1.246796000  | -1.304921000     | -0.000018000 |                          |           |            |                     |                                             |
| TS10              | 6 | 0.111603000  | -0.287227000     | -0.102986000 | -133.250220              | 0.049889  | -1771.9790 | 401.0056            | 554.7502                                    |
| (C <sub>1</sub> ) | 1 | -0.647634000 | -0.936704000     | 0.714572000  |                          |           | 741.2751   | 847.7466            | 1006.5520                                   |
|                   | 7 | 1.256810000  | 0.230339000      | -0.041640000 |                          |           | 1044.6290  | 1142.2677           | 1205.5827                                   |
|                   | 1 | 2.008622000  | -0.374236000     | 0.272743000  |                          |           | 1453.2916  | 1724.0621           | 2008.9236                                   |
|                   | 6 | -1.223677000 | 0.130105000      | 0.000617000  |                          |           | 3047.5441  | 3214.1018           | 3506.8341                                   |
|                   | 1 | -1.986861000 | -0.467127000     | -0.476695000 |                          |           |            |                     |                                             |
|                   | 1 | -1.499357000 | 1.108430000      | 0.395074000  |                          |           |            |                     |                                             |
| <b>TS11</b>       | 6 | 0.112309000  | -0.294894000     | -0.107477000 | -133.243531              | 0.049335  | -1776.1339 | 370.7758            | 511.7982                                    |

| Species            |   | Cart         | tesian coordinato | e            | $E^{0 \text{ K}}_{elec}$ | ZPE       | Unscal    | led vibrational fre | quencies <sup>[a]</sup> (cm <sup>-1</sup> ) |
|--------------------|---|--------------|-------------------|--------------|--------------------------|-----------|-----------|---------------------|---------------------------------------------|
|                    |   |              | (A)               |              | (Hartree)                | (Hartree) |           |                     | •                                           |
| (C <sub>1</sub> )  | 1 | -0.699666000 | -0.927926000      | 0.680506000  |                          |           | 750.4558  | 835.5311            | 989.9530                                    |
|                    | 7 | 1.313631000  | 0.008277000       | 0.050087000  |                          |           | 1042.2583 | 1103.2175           | 1205.7693                                   |
|                    | 1 | 1.578203000  | 0.953201000       | -0.242129000 |                          |           | 1452.4147 | 1763.5047           | 2039.1681                                   |
|                    | 6 | -1.214925000 | 0.158366000       | -0.006832000 |                          |           | 3029.2537 | 3209.4137           | 3352.0572                                   |
|                    | 1 | -1.988235000 | -0.396187000      | -0.518500000 |                          |           |           |                     |                                             |
|                    | 1 | -1.470019000 | 1.132146000       | 0.415368000  |                          |           |           |                     |                                             |
| TS12               | 6 | 0.171508000  | -0.152510000      | 0.000001000  | -133.286575              | 0.045989  | -928.0291 | <i>97.1097</i>      | 269.8738                                    |
| $(C_s)$            | 7 | 1.333297000  | -0.164028000      | -0.000001000 |                          |           | 410.6883  | 555.4406            | 920.8705                                    |
|                    | 1 | 2.128526000  | 1.238006000       | 0.000001000  |                          |           | 1052.5186 | 1062.9991           | 1409.0026                                   |
|                    | 6 | -1.263468000 | 0.072216000       | 0.000000000  |                          |           | 1469.2808 | 1469.4916           | 2235.2719                                   |
|                    | 1 | -1.477615000 | 1.143808000       | -0.000044000 |                          |           | 3027.3364 | 3092.9328           | 3114.0732                                   |
|                    | 1 | -1.716119000 | -0.375963000      | -0.884062000 |                          |           |           |                     |                                             |
|                    | 1 | -1.716108000 | -0.375889000      | 0.884105000  |                          |           |           |                     |                                             |
| IM1_trans          | 6 | -1.330772000 | -0.113976000      | 0.026890000  | -133.298959              | 0.054957  | 325.2759  | 448.4972            | 558.5426                                    |
| $(\overline{C}_1)$ | 1 | -1.809859000 | -1.076335000      | -0.000345000 |                          |           | 666.0633  | 799.5325            | 888.5935                                    |
|                    | 6 | -0.139313000 | 0.435324000       | -0.008054000 |                          |           | 1068.3332 | 1191.9039           | 1331.6107                                   |
|                    | 1 | -0.057812000 | 1.519540000       | -0.026490000 |                          |           | 1643.1654 | 1670.5167           | 3108.3731                                   |
|                    | 7 | 1.108318000  | -0.206754000      | -0.090919000 |                          |           | 3266.2539 | 3527.8031           | 3628.7614                                   |
|                    | 1 | 1.086204000  | -1.189825000      | 0.136396000  |                          |           |           |                     |                                             |
|                    | 1 | 1.843743000  | 0.265814000       | 0.413855000  |                          |           |           |                     |                                             |
| IM1_cis            | 6 | -1.279957000 | -0.295965000      | 0.024317000  | -133.301094              | 0.054880  | 351.4663  | 469.9626            | 525.4230                                    |
| $(\overline{C_1})$ | 1 | -2.331077000 | -0.079127000      | -0.002184000 |                          |           | 665.3285  | 789.1309            | 825.3711                                    |
|                    | 6 | -0.147748000 | 0.367689000       | -0.004379000 |                          |           | 1083.0663 | 1215.9473           | 1317.0054                                   |
|                    | 1 | -0.175952000 | 1.459223000       | -0.023532000 |                          |           | 1642.9377 | 1688.2999           | 3047.6907                                   |
|                    | 7 | 1.144913000  | -0.152904000      | -0.088975000 |                          |           | 3285.8592 | 3539.9236           | 3642.3267                                   |
|                    | 1 | 1.213029000  | -1.132841000      | 0.141550000  |                          |           |           |                     |                                             |
|                    | 1 | 1.845842000  | 0.392733000       | 0.387359000  |                          |           |           |                     |                                             |
| IM2_cis            | 6 | 0.000000000  | 0.413884000       | 0.000000000  | -133.339236              | 0.055049  | 492.1578  | 532.4970            | 673.1736                                    |
| $(\overline{C_s})$ | 1 | 0.133548000  | 1.498806000       | 0.000000000  |                          |           | 834.1530  | 1000.4143           | 1051.9201                                   |
|                    | 7 | -1.189911000 | -0.138045000      | 0.000000000  |                          |           | 1111.7891 | 1249.1466           | 1353.7140                                   |
|                    | 1 | -1.911790000 | 0.582900000       | 0.000000000  |                          |           | 1462.2551 | 1513.9427           | 3039.4325                                   |
|                    | 6 | 1.151834000  | -0.370857000      | 0.000000000  |                          |           | 3150.8689 | 3256.2399           | 3442.0992                                   |
|                    | 1 | 2.135699000  | 0.074422000       | 0.000000000  |                          |           |           |                     |                                             |
|                    | 1 | 1.060912000  | -1.447977000      | 0.000000000  |                          |           |           |                     |                                             |

| Species                |   | Cart         | esian coordinat | e            | E <sup>0 K</sup> <sub>elec</sub> | ZPE<br>(Hantnoo) | Unsca     | led vibrational free | quencies <sup>[a]</sup> (cm <sup>-1</sup> ) |
|------------------------|---|--------------|-----------------|--------------|----------------------------------|------------------|-----------|----------------------|---------------------------------------------|
|                        |   |              | (A)             |              | (Hartree)                        | (Hartree)        |           |                      |                                             |
| IM2_trans              | 6 | 0.000000000  | 0.446588000     | 0.000000000  | -133.338363                      | 0.055021         | 491.3708  | 495.7911             | 686.5832                                    |
| $(C_s)$                | 1 | 0.163865000  | 1.523480000     | 0.000000000  |                                  |                  | 837.4915  | 990.8775             | 1077.9686                                   |
|                        | 7 | -1.253587000 | 0.060706000     | 0.000000000  |                                  |                  | 1143.3314 | 1237.4744            | 1380.9563                                   |
|                        | 1 | -1.296837000 | -0.962740000    | 0.000000000  |                                  |                  | 1454.5994 | 1499.7807            | 3095.7540                                   |
|                        | 6 | 1.126453000  | -0.375241000    | 0.000000000  |                                  |                  | 3135.2269 | 3236.5585            | 3387.5603                                   |
|                        | 1 | 2.124527000  | 0.039489000     | 0.000000000  |                                  |                  |           |                      |                                             |
|                        | 1 | 1.024837000  | -1.453255000    | 0.000000000  |                                  |                  |           |                      |                                             |
| IM3                    | 6 | -1.276349000 | 0.105004000     | -0.015145000 | -133.310134                      | 0.054855         | 249.8432  | 383.8476             | 489.4761                                    |
| $(C_1)$                | 1 | -2.145876000 | -0.478551000    | 0.252932000  |                                  |                  | 666.3011  | 840.3149             | 987.4750                                    |
|                        | 6 | -0.064336000 | -0.409811000    | 0.036637000  |                                  |                  | 1080.7826 | 1190.5188            | 1426.1667                                   |
|                        | 1 | -1.448970000 | 1.122573000     | -0.364433000 |                                  |                  | 1636.6704 | 1711.5499            | 3062.2008                                   |
|                        | 7 | 1.179934000  | 0.122313000     | -0.048385000 |                                  |                  | 3191.9137 | 3528.4798            | 3633.0798                                   |
|                        | 1 | 1.933787000  | -0.491083000    | -0.311163000 |                                  |                  |           |                      |                                             |
|                        | 1 | 1.445631000  | 0.819715000     | 0.632405000  |                                  |                  |           |                      |                                             |
| IM4                    | 6 | -0.192149000 | -0.402819000    | -0.000026000 | -133.333301                      | 0.054909         | 150.4621  | 434.7220             | 669.2686                                    |
| $(C_1)$                | 7 | -1.246804000 | 0.237520000     | -0.000002000 |                                  |                  | 900.5396  | 975.5665             | 1041.8215                                   |
|                        | 1 | -2.119513000 | -0.287965000    | 0.000054000  |                                  |                  | 1169.9517 | 1383.6194            | 1461.1371                                   |
|                        | 6 | 1.212363000  | 0.079857000     | -0.000005000 |                                  |                  | 1466.0664 | 1827.8587            | 3004.5789                                   |
|                        | 1 | 1.257501000  | 1.173048000     | -0.000700000 |                                  |                  | 3085.0088 | 3097.1824            | 3434.3901                                   |
|                        | 1 | 1.733903000  | -0.304383000    | 0.877367000  |                                  |                  |           |                      |                                             |
|                        | 1 | 1.734457000  | -0.305567000    | -0.876517000 |                                  |                  |           |                      |                                             |
| Н                      | 1 | 0.000000000  | 0.000000000     | 0.000000000  | -0.499994                        | 0.000000         |           |                      |                                             |
|                        |   |              |                 |              |                                  |                  |           |                      |                                             |
| CH <sub>2</sub> =CH=NH | 6 | 1.247479000  | 0.000082000     | 0.014492000  | -132.754859                      | 0.043657         | 421.8141  | 486.7953             | 713.5278                                    |
| $(C_s)$                | 1 | 1.793789000  | -0.930924000    | 0.024729000  |                                  |                  | 900.3438  | 1001.9827            | 1032.4863                                   |
|                        | 6 | -0.058761000 | -0.000453000    | 0.003620000  |                                  |                  | 1166.2780 | 1439.3138            | 2121.7789                                   |
|                        | 1 | 1.792759000  | 0.931678000     | 0.026096000  |                                  |                  | 3163.1084 | 3247.7176            | 3467.9683                                   |
|                        | 7 | -1.271175000 | 0.000394000     | -0.127065000 |                                  |                  |           |                      |                                             |
|                        | 1 | -1.820629000 | -0.001287000    | 0.729960000  |                                  |                  |           |                      |                                             |
| CH≡C-NH <sub>2</sub>   | 6 | -1.362373000 | 0.000002000     | 0.010913000  | -132.732893                      | 0.044191         | 367.7640  | 427.0221             | 491.7885                                    |
| $(C_s)$                | 1 | -2.421718000 | 0.000059000     | 0.024433000  |                                  |                  | 615.0623  | 699.2190             | 1082.6439                                   |
|                        | 6 | -0.161536000 | -0.000033000    | -0.001886000 |                                  |                  | 1202.4095 | 1640.4080            | 2244.7294                                   |
|                        | 1 | 1.632940000  | -0.835434000    | 0.261981000  |                                  |                  | 3483.8810 | 3530.1810            | 3612.3076                                   |
|                        | 7 | 1.185618000  | 0.000018000     | -0.086099000 |                                  |                  |           |                      |                                             |

| Species            |   | Cart         | tesian coordinat<br>(Å) | e            | <i>E</i> <sup>0 K</sup> <sub>elec</sub> (Hartree) | ZPE<br>(Hartree) | Unscaled vibrational frequencies <sup>[a]</sup> (cm <sup>-1</sup> ) |                             |                         |
|--------------------|---|--------------|-------------------------|--------------|---------------------------------------------------|------------------|---------------------------------------------------------------------|-----------------------------|-------------------------|
|                    | 1 | 1.632905000  | 0.835434000             | 0.262120000  |                                                   |                  |                                                                     |                             |                         |
| CH <sub>3</sub> CN | 6 | 0.280682000  | -0.000012000            | -0.000076000 | -132.799170                                       | 0.045171         | 380.3381                                                            | 380.4888                    | 928.0983                |
| (C <sub>3v</sub> ) | 7 | 1.430292000  | 0.000002000             | 0.000035000  |                                                   |                  | 1062.3344                                                           | 1062.4953                   | 1414.3748               |
|                    | 6 | -1.174159000 | 0.000003000             | 0.000017000  |                                                   |                  | 1475.1759                                                           | 1475.4713                   | 2367.5481               |
|                    | 1 | -1.550379000 | -0.401247000            | 0.940432000  |                                                   |                  | 3048.7785                                                           | 3116.2521                   | 3116.4719               |
|                    | 1 | -1.550334000 | 1.015060000             | -0.122662000 |                                                   |                  | (362; 362; 920;                                                     | 1041; 1041; 1385;           | 1448; 1448; 2267; 2954; |
|                    | 1 | -1.550465000 | -0.613767000            | -0.817664000 |                                                   |                  | 3009; 3009) <sup>1</sup>                                            |                             |                         |
| C <sub>2</sub> H   | 6 | 0.000000000  | 0.000000000             | -0.471812000 | -76.630558                                        | 0.013988         | 294.0731                                                            | 294.0732                    | 2095.1101               |
| $(C_{\infty v})$   | 1 | 0.000000000  | 0.000000000             | -1.534690000 |                                                   |                  | 3456.8967                                                           |                             |                         |
|                    | 6 | 0.000000000  | 0.000000000             | 0.727593000  |                                                   |                  | (371.6; 371.6; 1                                                    | 840.6; 3298.9) <sup>2</sup> |                         |
| NH <sub>3</sub>    | 7 | 0.000000000  | 0.000000000             | 0.115415000  | -56.586361                                        | 0.034252         | 1064.1054                                                           | 1676.5984                   | 1676.5987               |
| (C <sub>3v</sub> ) | 1 | 0.000000000  | 0.937940000             | -0.269302000 |                                                   |                  | 3461.4409                                                           | 3577.9857                   | 3577.9859               |
|                    | 1 | -0.812280000 | -0.468970000            | -0.269302000 |                                                   |                  | (950; 1627; 162                                                     | 7; 3337; 3444; 3444         | $(4)^1$                 |
|                    | 1 | 0.812280000  | -0.468970000            | -0.269302000 |                                                   |                  |                                                                     |                             | <i>,</i>                |

<sup>[a]</sup> Frequency modes in *italic* and **bold** corresponds to the internal rotations. Frequencies in the parentheses ("( )") are taken from experimental studies.

|     |                                                     | $k^{\infty}(T) =$      | $A \times T^n \times \exp$ |                       |                                                               |
|-----|-----------------------------------------------------|------------------------|----------------------------|-----------------------|---------------------------------------------------------------|
| No. | Reaction                                            | A [b]                  | n                          | $E_a/R$ (K)           | $k^{\infty}(T)$ at 300 K [0]                                  |
| 1   | $C_2H_2 + NH_2 \rightarrow IM1\_trans (via TS1)$    | 1.95×10 <sup>-19</sup> | 2.40                       | 2.34×10 <sup>3</sup>  | 6.81×10 <sup>-17</sup> (6.56×10 <sup>-17</sup> ) <sup>4</sup> |
|     | (reverse reaction)                                  | $2.07 \times 10^{10}$  | 1.18                       | $1.47 \times 10^{4}$  | 9.01×10 <sup>-9</sup>                                         |
| -   | IM1 trans $\rightarrow$ IM3 (via TS2)               | 3.60×10 <sup>-18</sup> | 9.08                       | 1.35×10 <sup>4</sup>  | 3.04×10 <sup>-15</sup>                                        |
| 2   | (reverse reaction)                                  | 1.03×10 <sup>-19</sup> | 9.50                       | 1.69×10 <sup>4</sup>  | 1.06×10 <sup>-20</sup>                                        |
| 2   | $IM3 \rightarrow P1$ (via TS3)                      | 7.73×10 <sup>6</sup>   | 1.93                       | 1.67×10 <sup>4</sup>  | 3.12×10 <sup>-13</sup>                                        |
| 3   | (reverse reaction)                                  | 1.25×10-16             | 1.69                       | 2.44×10 <sup>3</sup>  | 5.76×10 <sup>-16</sup>                                        |
| 4   | $IM1\_trans \rightarrow IM1\_cis$ (via TS4)         | $1.87 \times 10^{12}$  | 0.32                       | 1.16×10 <sup>3</sup>  | 2.42×10 <sup>11</sup>                                         |
| 4   | (reverse reaction)                                  | 8.98×10 <sup>11</sup>  | 0.42                       | $1.84 \times 10^{4}$  | $2.14 \times 10^{10}$                                         |
|     | $IM1\_cis \rightarrow P2$ (via TS5)                 | 1.59×10 <sup>10</sup>  | 1.26                       | 2.03×10 <sup>4</sup>  | 9.98×10 <sup>-17</sup>                                        |
| 5   | (reverse reaction)                                  | 2.86×10 <sup>-14</sup> | 1.16                       | 1.53×10 <sup>3</sup>  | 1.32×10 <sup>-13</sup>                                        |
| 6   | $IM1_cis \rightarrow IM2_cis (via TS6)$             | 1.20×10 <sup>-25</sup> | 11.0                       | 9.36×10 <sup>3</sup>  | 8.22×10 <sup>-12</sup>                                        |
| 6   | (reverse reaction)                                  | 5.18×10 <sup>-25</sup> | 11.1                       | 2.16×10 <sup>4</sup>  | 9.78×10 <sup>-29</sup>                                        |
| 7   | $IM3 \rightarrow IM1_{cis}$ (via TS7)               | 6.10×10 <sup>2</sup>   | 3.07                       | 2.01×10 <sup>4</sup>  | 2.02×10 <sup>-19</sup>                                        |
|     | (reverse reaction)                                  | $1.02 \times 10^{4}$   | 2.74                       | 1.73×10 <sup>4</sup>  | 5.15×10 <sup>-15</sup>                                        |
| 0   | $IM2\_cis \rightarrow P1 (via TS8)$                 | 1.32×10 <sup>9</sup>   | 1.64                       | 2.55×10 <sup>4</sup>  | 1.95×10 <sup>-24</sup>                                        |
| ð   | (reverse reaction)                                  | 2.96×10 <sup>-16</sup> | 1.68                       | $1.77 \times 10^{3}$  | 1.19×10 <sup>-14</sup>                                        |
| 0   | $IM2_cis \rightarrow IM2_trans (via TS9)$           | 1.73×10 <sup>6</sup>   | 2.21                       | 1.31×10 <sup>4</sup>  | 6.53×10 <sup>-8</sup>                                         |
| 9   | (reverse reaction)                                  | $1.40 \times 10^{6}$   | 2.23                       | $1.28 \times 10^{4}$  | 1.50×10 <sup>-7</sup>                                         |
| 10  | $IM2_{cis} \rightarrow IM4 (via TS10)$              | 1.70×10 <sup>-27</sup> | 11.7                       | $1.64 \times 10^4$    | 3.05×10 <sup>-22</sup>                                        |
| 10  | (reverse reaction)                                  | 1.11×10 <sup>-29</sup> | 12.3                       | $1.42 \times 10^{4}$  | 9.25×10 <sup>-20</sup>                                        |
| 11  | IM2_trans $\rightarrow$ IM4 (via TS11)              | 1.05×10-30             | 12.6                       | 1.73×10 <sup>4</sup>  | 2.06×10 <sup>-24</sup>                                        |
|     | (reverse reaction)                                  | 8.45×10 <sup>-33</sup> | 13.2                       | $1.54 \times 10^{4}$  | 2.73×10 <sup>-22</sup>                                        |
| 10  | $IM4 \rightarrow P3 (via TS12)$                     | 4.54×10 <sup>8</sup>   | 1.62                       | $1.14 \times 10^{4}$  | 1.37×10 <sup>-4</sup>                                         |
| 12  | (reverse reaction)                                  | 2.28×10 <sup>-15</sup> | 1.49                       | 3.32×10 <sup>3</sup>  | 1.74×10 <sup>-16</sup>                                        |
| 12  | $C_2H_2 + NH_2 \rightarrow P4 \text{ (via TS_abs)}$ | 1.01×10-17             | 2.07                       | 1.20×10 <sup>4</sup>  | 6.53×10 <sup>-30</sup>                                        |
| 13  | (reverse reaction)                                  | 2.00×10 <sup>-19</sup> | 2.40                       | $-7.43 \times 10^{2}$ | 2.06×10 <sup>-12</sup>                                        |

**Table S2:** High-pressure rate constants for the  $C_2H_2 + NH_2$  system calculated at W1U method<sup>[a]</sup>.

<sup>[a]</sup> Rate constants are valid for 250–2000 K. <sup>[b]</sup> Units of [s<sup>-1</sup>] for first-order reactions and [cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>] for second-order reactions. This work calculated at composite W1U method including asymmetric Eckart tunneling, HIR treatments and symmetry reactions.

 $k(T, P)_{tot}$  (cm<sup>3</sup>/molecule/s) T (K) 1 torr 100 torr 350 torr 760 torr 7600 torr 76000 torr 250 5.89E-18 8.93E-18 8.83E-18 8.95E-18 8.97E-18 8.98E-18 3.22E-17 300 6.74E-17 6.51E-17 6.80E-17 6.87E-17 6.83E-17 1.99E-16 400 7.81E-16 8.84E-16 9.26E-16 9.61E-16 9.69E-16 500 4.32E-16 3.98E-15 4.41E-15 3.05E-15 5.11E-15 5.27E-15 600 5.75E-16 6.48E-15 9.79E-15 1.16E-14 1.60E-14 1.74E-14 700 7.24E-16 9.54E-15 1.63E-14 2.10E-14 3.52E-14 4.28E-14 800 1.06E-15 1.11E-14 2.12E-14 2.94E-14 6.10E-14 8.44E-14 900 2.29E-15 1.12E-14 2.27E-14 3.31E-14 8.64E-14 1.42E-13 1000 5.25E-15 1.02E-14 1.88E-14 2.91E-14 9.87E-14 2.06E-13 1100 1.19E-14 1.32E-14 7.88E-14 1.70E-14 2.24E-14 2.43E-13 1200 2.40E-14 2.45E-14 2.52E-14 2.81E-14 5.55E-14 2.07E-13 1300 4.45E-14 4.46E-14 4.46E-14 4.68E-14 5.58E-14 1.41E-13 1400 7.67E-14 7.75E-14 7.80E-14 7.87E-14 8.28E-14 1.20E-13 1500 1.27E-13 1.27E-13 1.27E-13 1.26E-13 1.27E-13 1.45E-13 1600 1.98E-13 2.00E-13 1.97E-13 1.99E-13 1.99E-13 2.08E-13 1700 2.94E-13 2.97E-13 2.97E-13 2.98E-13 2.96E-13 3.00E-13 1800 4.32E-13 4.27E-13 4.36E-13 4.32E-13 4.31E-13 4.33E-13 1900 6.09E-13 6.03E-13 6.11E-13 6.07E-13 5.99E-13 5.98E-13 2000 8.29E-13 8.32E-13 8.27E-13 8.16E-13 8.29E-13 8.27E-13

**Table S3:**  $k(T, P)_{tot}$  (overall rate constants) for the C<sub>2</sub>H<sub>2</sub> + NH<sub>2</sub>  $\rightarrow$  products, calculated at different pressures.

| No. | Species                           | T1 diagnostics |
|-----|-----------------------------------|----------------|
| 1   | $C_2H_2$                          | 0.01321782     |
| 2   | NH <sub>2</sub>                   | 0.00896154     |
| 3   | Pre-complex                       | 0.01178331     |
| 4   | Post-complex                      | 0.04330313     |
| 5   | TS_abs                            | 0.05380368     |
| 6   | TS1                               | 0.03674252     |
| 7   | TS2                               | 0.02111373     |
| 8   | TS3                               | 0.02296102     |
| 9   | TS4                               | 0.03114341     |
| 10  | TS5                               | 0.02573060     |
| 11  | TS6                               | 0.02541486     |
| 12  | TS7                               | 0.02831653     |
| 13  | TS8                               | 0.03121704     |
| 14  | TS9                               | 0.03037410     |
| 15  | TS10                              | 0.02736871     |
| 16  | TS11                              | 0.02482530     |
| 17  | TS12                              | 0.02745000     |
| 18  | IM1_trans                         | 0.03240451     |
| 19  | IM1_cis                           | 0.03197558     |
| 20  | IM2_cis                           | 0.03134199     |
| 21  | IM2_trans                         | 0.03135945     |
| 22  | IM3                               | 0.03456314     |
| 23  | IM4                               | 0.02621243     |
| 24  | Н                                 | 0.00000000     |
| 25  | CH <sub>2</sub> =C=NH             | 0.01482788     |
| 26  | CH <sub>≡</sub> C-NH <sub>2</sub> | 0.01249674     |
| 27  | CH <sub>3</sub> -CN               | 0.01257055     |
| 28  | NH <sub>3</sub>                   | 0.00697993     |
| 29  | C <sub>2</sub> H                  | 0.06161988     |

**Table S4:** T1 diagnostics for the species involved in  $C_2H_2 + NH_2$  reaction computed at CCSD(T)/cc-pVQZ based on the B3LYP/cc-pVTZ+d geometries.

**Table S5:** Detailed kinetic submechanism in NASA format for the reaction  $C_2H_2 + NH_2$ .

nh2 N 1H 2 G 300.000 2500.000 1500.000 1 3.09786197E+001-5.80869974E-0024.27200343E-005-1.38198100E-0081.66008466E-012 2 -6.65507990E+003-1.58005028E+0021.84885080E+000-9.75357607E-0041.90034679E-006 3 -1.60102836E-0094.88145238E-0135.02798167E+0033.02015340E+000 4 G 300.000 2500.000 1500.000 c2h2 C 2H 2 1 9.09914958E+001-1.96550770E-0011.62240222E-004-5.89024426E-0087.92482452E-012 2 -2.53230506E+004-4.68031180E+0021.49205542E+0006.17451208E-003-1.23898918E-005 3 9.91993784E-009-2.73892860E-0126.39663254E+0031.49301670E+001 4 im1 trans C 2H 4N 1 G 300.000 2500.000 1500.000 1 2.12326681E+002-4.25689724E-0013.23666959E-004-1.08207365E-0071.34170712E-011 2 -7.18056602E+004-1.12050326E+0034.21568470E+0001.01040052E-003-4.06490110E-007 3 -1.03713068E-0097.01499713E-0138.63764954E+0032.15555483E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 im1 cis 1 2.88680792E+000-2.23544706E-0034.58246041E-006-2.11675610E-0092.95258311E-013 2 1.04583494E+0043.22450180E+0014.17852977E+0001.40964706E-003-2.44203743E-006 3 2.09713955E-009-7.11966468E-0138.47153553E+0032.17356057E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 im2 cis 1 1.55453657E+001-2.21472984E-0021.56209534E-005-4.54382529E-0094.49882929E-013 2 1.44016460E+003-4.07514276E+0013.96184233E+0002.80871421E-003-5.07290606E-006 3 3.94771170E-009-1.08873324E-0125.60444457E+0032.21980200E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 im2 trans 1 -1.58634849E+0014.18970296E-002-3.27527796E-0051.15150103E-008-1.52924239E-012 2 1.36623976E+0041.31747498E+0023.90340040E+0003.72985595E-003-7.59121665E-006 3 6.34523676E-009-1.86412157E-0125.66298388E+0032.23505682E+001 4 im3 C 2H 4N 1 G 300.000 2500.000 1500.000 1 -1.41992609E+0023.13146661E-001-2.48631899E-0048.66996243E-008-1.11927500E-011 2 6.21268314E+0048.18227507E+0023.55995748E+0005.48768887E-003-1.18900850E-005 3 1.05568099E-008-3.25400050E-0127.85617374E+0032.45127275E+001 4 C 2N 1H 4 G 300.000 2500.000 1500.000 1 im4 1.39657640E+002-2.88226577E-0012.27859475E-004-7.91633659E-0081.01974031E-011 2 -4.42026494E+004-7.16465012E+0023.81285450E+0004.08685153E-003-8.87339942E-006 3 7.52701034E-009-2.17103803E-0126.09949328E+0032.29768582E+001 4 N 1H 4C 2 G 300.000 2500.000 1500.000 1 ts1 2 -3.26816759E+0026.83736293E-001-5.25091997E-0041.77746805E-007-2.23859819E-011 1.39362074E+0051.83413137E+0033.56215887E+0004.50197999E-003-9.02984309E-006 3 7.68706447E-009-2.37061069E-0121.21574142E+0042.22386396E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts<sub>2</sub> 1 2.64724972E+002-5.52958536E-0014.35906810E-004-1.51195809E-0071.94686525E-011 2 -8.35908063E+004-1.40125415E+0035.15624801E+000-5.42109369E-0031.11801912E-005 3 -9.37138948E-0092.72502814E-0121.35293713E+0041.51770862E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts3 1 2 -1.24963959E+0022.60654771E-001-1.94801255E-0046.40281181E-008-7.81757263E-012 6.24990694E+0047.33081929E+0024.29545875E+0004.99183563E-004-1.93476907E-006 3 2.29651098E-009-7.94965163E-0131.18638552E+0042.16575042E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 1 ts4 2.37834879E+002-4.72312608E-0013.54454689E-004-1.17015144E-0071.43378629E-011 2 -8.25828739E+004-1.26620940E+0034.73755600E+000-3.64082241E-0038.47714622E-006 3 -7.67230788E-0092.35952565E-0128.82562763E+0031.68414816E+001 4

G 300.000 2500.000 1500.000 ts5 C 2H 4N 1 1 2.42347452E+002-4.82325465E-0013.61620421E-004-1.19008253E-0071.45099756E-011 2 -7.95416553E+004-1.28947202E+0035.20356800E+000-4.91396232E-0038.21995130E-006 3 -5.49246485E-0091.24455050E-0121.31260448E+0041.53455687E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts6 1 -5.69254379E+0019.76836905E-002-5.08972703E-0058.45857628E-0091.01725323E-013 2 4.13684434E+0043.70253157E+0026.02825523E+000-9.71024971E-0031.81297057E-005 3 -1.32980226E-0083.29173744E-0121.28041835E+0041.37416756E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts7 1 8.25827310E+001-1.65729375E-0011.29439273E-004-4.42127620E-0085.57417057E-012 2 -1.61253102E + 004 - 4.08268105E + 0023.47683558E + 0004.77473448E - 003 - 1.01220445E - 0053 8.80759677E-009-2.64242717E-0121.31525924E+0042.22881930E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts8 1 -3.81416577E+0028.26059702E-001-6.55384440E-0042.28457247E-007-2.95311466E-011 2 1.53879235E+0052.12126195E+0036.72179295E+000-1.41542912E-0022.83847136E-005 3 -2.35350273E-0086.82730982E-0121.14090419E+0041.12974927E+001 4 ts9 C 2H 4N 1 G 300.000 2500.000 1500.000 1 -1.21373494E+0022.49402602E-001-1.83522393E-0045.94357478E-008-7.15774414E-012 2 5.90023680E+0047.11976047E+0024.60801827E+000-3.08788925E-0038.05575554E-006 3 -7.66249266E-0092.37898280E-0128.98028961E+0031.72631747E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts10 1 -1.71925353E+0023.64610761E-001-2.80434758E-0049.50853380E-008-1.19974481E-011 2 7.94183671E+0049.86653324E+0024.72665023E+000-2.82427159E-0035.99836131E-006 3 -4.83712265E-0091.26586808E-0121.18696501E+0041.92882485E+001 4 C 2H 4N 1 G 300.000 2500.000 1500.000 ts11 1 7.65164923E+001-1.30210919E-0018.54117281E-005-2.40890181E-0082.45560109E-012 2 -1.87834938E + 004 - 3.83748282E + 0025.16325064E + 000 - 4.73670091E - 0038.64684011E - 0063 -6.40541903E-0091.66896103E-0121.22678852E+0041.73279390E+001 4 ts12 C 2N 1H 4 G 300.000 2500.000 1500.000 1 2 1.15505364E+001-1.86777357E-0021.74725360E-005-7.24658666E-0091.11984990E-012 6.69737036E+003-1.91993084E+0014.41696551E+000-2.39870566E-0036.81946354E-006 3 -6.89141337E-0092.22008128E-0128.86398310E+0031.86880359E+001 4 ts abs C 2H 4N 1 G 300.000 2500.000 1500.000 1 1.50092994E+002-2.95137747E-0012.17255464E-004-6.91139632E-0088.03383976E-012 2 -4.15780591E+004-7.77893913E+0026.24280268E+000-1.34779445E-0022.87256579E-005 3 -2.30948572E-0086.07465734E-0121.39247269E+0041.42729221E+001 4 C 2H 3N 1 G 300.000 2500.000 1500.000 ch2cnh 1 1.01756086E+002-2.03546333E-0011.57350257E-004-5.36540649E-0086.81266470E-012 2 -3.23510638E+004-5.18059722E+0022.89840954E+0004.94965077E-003-8.93733895E-006 3 6.56266835E-009-1.68270982E-0125.13771018E+0032.22432816E+001 4 G 300.000 2500.000 1500.000 H 1 1 h 5.81798613E-0013.04299756E-005-2.24587211E-0087.29794003E-012-8.81051484E-016 2 6.09430563E+003-7.42447376E-0035.96967320E-0018.73608570E-007-1.71249373E-009 3 1.35696245E-012-3.78262084E-0166.08821338E+003-9.13185345E-002 4 C 2H 3N 1 G 300.000 2500.000 1500.000 chcnh2 1 7.75246885E+001-1.42039118E-0011.01040731E-004-3.15205387E-0083.65731734E-012 2 -2.34045482E+004-3.90515972E+0024.48185364E+000-4.04605515E-0039.02566566E-006 3 -8.15918640E-0092.50480499E-0126.62223649E+0031.53701646E+001 4 C 2N 1H 3 G 300.000 2500.000 1500.000 ch3cn 1

-2.00503496E+0024.27014473E-001-3.31316818E-0041.13098862E-007-1.43291800E-011 2 7.92214061E+0041.13511231E+0033.73182395E+0001.17428248E-0043.94579790E-007 3 -5.85039019E-0101.99849250E-0131.80241594E+0031.81938699E+001 4 c2h C 2H 1 G 300.000 2500.000 1500.000 1 1.49118181E+002-2.82686570E-0012.00931697E-004-6.26973253E-0087.24308427E-012 2 -4.47477742E+004-8.11088646E+0023.30461713E+000-8.30820627E-0031.54781327E-005 3 -1.19465191E-0083.27855817E-0121.57286776E+0042.73406806E-001 4 G 300.000 2500.000 1500.000 nh3 N 1H 3 1 -3.27504935E+0017.24546826E-002-5.52651161E-0051.84696205E-008-2.28185006E-012 2 1.18459103E+0042.00163983E+0022.31988386E+0005.53841451E-004-1.31394459E-006 3 1.18812116E-009-3.65770547E-013-1.61429889E+0037.85286751E+000 4 N 1H 4C 2 G 300.000 2500.000 1500.000 pre-complex 1 -1.09004952E+0032.25749001E+000-1.72355319E-0035.77502956E-007-7.16929407E-011 2 4.30281725E+0056.02340466E+0038.05555051E+000-1.90688245E-0023.66930807E-005 3 -2.91833704E-0088.09165336E-0121.06186426E+0048.81260319E+000 4 post-complex C 2H 4N 1 G 300.000 2500.000 1500.000 1 -1.87852283E+0034.03829753E+000-3.20810817E-0031.11883563E-006-1.44603190E-010 2 7.08094642E+0051.02713971E+004-2.86110009E+0004.76944599E-002-1.01220547E-004 3 8.28521542E-008-2.28864727E-0111.45379932E+0045.59918768E+001 4

| Addition                                     |                             |                                  |  |  |  |  |  |
|----------------------------------------------|-----------------------------|----------------------------------|--|--|--|--|--|
| Species                                      | $\Delta E_{rxn}$ (kcal/mol) | $\Delta V^{\ddagger}$ (kcal/mol) |  |  |  |  |  |
| $C_2H_2$                                     | -22.6                       | 6.4                              |  |  |  |  |  |
| $C_2H_4$                                     | -18.0                       | 4.6                              |  |  |  |  |  |
| <u>C</u> H <sub>2</sub> =CH-CH <sub>3</sub>  | -7.7                        | 1.9                              |  |  |  |  |  |
| CH <sub>2</sub> = <u>C</u> H-CH <sub>3</sub> | -7.8                        | 2.0                              |  |  |  |  |  |
|                                              | Abstraction                 |                                  |  |  |  |  |  |
| $C_2H_2$                                     | 24.8                        | 23.1                             |  |  |  |  |  |
| $C_2H_4$                                     | 2.8                         | 13.7                             |  |  |  |  |  |
| C <sub>2</sub> H <sub>6</sub>                | -6.6                        | 10.6                             |  |  |  |  |  |

**Table S6:** Reaction energies,  $\Delta E_{rxn}$ , barrier heights,  $\Delta V^{\ddagger}$  (including ZPE corrections), calculated at W1U method between NH<sub>2</sub> radical with several hydrocarbons.

**Table S7:** Comparison of the barrier height of the channels via **TS1** and **TS\_abs** at 0 K (including ZPE) obtained from the different levels of theory. Units are in kcal/mol.

| Reaction | CCSD(T)/cc-pV(T,Q)Z// |                     |                     |                     |  |  |  |
|----------|-----------------------|---------------------|---------------------|---------------------|--|--|--|
| channel  | B3LYP                 | M06-2X              | UCCSD               | UCCSD(T)            |  |  |  |
| TO 1     | 7.0 <sup>[a]</sup>    | 7.2 <sup>[a]</sup>  | 7.5 <sup>[a]</sup>  | 7.5 <sup>[a]</sup>  |  |  |  |
| 151      | 7.0 <sup>[b]</sup>    | 7.4 <sup>[b]</sup>  | 7.6 <sup>[b]</sup>  | 7.6 <sup>[b]</sup>  |  |  |  |
| TC also  | 24.1 <sup>[a]</sup>   | 23.7 <sup>[a]</sup> | 24.0 <sup>[a]</sup> | N/A <sup>[a]</sup>  |  |  |  |
| IS_abs   | 24.8 <sup>[b]</sup>   | 24.2 <sup>[b]</sup> | 24.5 <sup>[b]</sup> | 24.8 <sup>[b]</sup> |  |  |  |

<sup>[a],[b]</sup> with the optimization and frequency calculations obtained at the basis sets, cc-pVTZ+d and cc-pVDZ, respectively.

**Table S8:** Comparison of calculated thermodynamic properties of all structures related to the title reaction with literature data. Unit:  $\Delta_f H^{298 \text{ K}}$  in kcal·mol<sup>-1</sup>,  $S^{298 \text{ K}}$  in cal·mol<sup>-1</sup>·K<sup>-1</sup> (NIST = Webbook NIST, webbook.nist.gov, ATcT = Active Thermochemical Tables<sup>5,6[a]</sup>).

| Species                            | Method                   | $\Delta_{\mathbf{f}} H^{298 \text{ K}}$ | <b>S</b> <sup>298 K</sup> |
|------------------------------------|--------------------------|-----------------------------------------|---------------------------|
| <b>^</b>                           | Ab initio <sup>[b]</sup> | 54.6                                    | 47.9                      |
| C <sub>2</sub> H <sub>2</sub>      | ATcT                     | 54.5                                    | 48.0                      |
|                                    | NIST                     | $(54.3 \pm 0.2)^7$ ; 54.2 <sup>8</sup>  | 48.08                     |
|                                    | Ab initio <sup>[b]</sup> | 44.3                                    | 46.6                      |
| NH <sub>2</sub>                    | ATcT                     | 45.1                                    | 46.6                      |
|                                    | NIST                     | 45.58                                   | 46.58                     |
| Pre-complex                        | Ab initio <sup>[b]</sup> | 97.1                                    | 75.8                      |
| Post-complex                       | Ab initio <sup>[b]</sup> | 117.7                                   | 72.3                      |
| TS abs                             | Ab initio <sup>[b]</sup> | 121.2                                   | 70.8                      |
| TSI                                | Ab initio <sup>[b]</sup> | 104.1                                   | 67.6                      |
| TS2                                | Ab initio <sup>[b]</sup> | 116.9                                   | 66.2                      |
| TS3                                | Ab initio <sup>[b]</sup> | 102.0                                   | 64.3                      |
| TS4                                | Ab initio <sup>[b]</sup> | 77.1                                    | 65.7                      |
| TS5                                | Ab initio <sup>[b]</sup> | 113.9                                   | 68.4                      |
| TS6                                | Ab initio <sup>[b]</sup> | 111.4                                   | 64.2                      |
| TS7                                | Ab initio <sup>[b]</sup> | 112.0                                   | 65.6                      |
| TS8                                | Ab initio <sup>[b]</sup> | 100.7                                   | 65.9                      |
| TS9                                | Ab initio <sup>[b]</sup> | 78.2                                    | 63.7                      |
| TS10                               | Ab initio <sup>[b]</sup> | 101.9                                   | 62.1                      |
| TS11                               | Ab initio <sup>[b]</sup> | 105.8                                   | 62.4                      |
| TS12                               | Ab initio <sup>[b]</sup> | 77.1                                    | 66.1                      |
| IM1 trans                          | Ab initio <sup>[b]</sup> | 74.8                                    | 65.5                      |
| IM1 cis                            | Ab initio <sup>[b]</sup> | 73.4                                    | 65.7                      |
| IM2 cis                            | Ab initio <sup>[b]</sup> | 49.2                                    | 62.4                      |
| IM2 trans                          | Ab initio <sup>[b]</sup> | 49.8                                    | 62.6                      |
| IM3                                | Ab initio <sup>[b]</sup> | 67.7                                    | 66.8                      |
| IM4                                | Ab initio <sup>[b]</sup> | 53.2                                    | 64.3                      |
|                                    | Ab initio <sup>[b]</sup> | 52.1                                    | 27.5                      |
| Н                                  | ATcT                     | 52.1                                    | 27.4                      |
|                                    | NIST                     | 52.18                                   | 27.48                     |
| CH <sub>2</sub> =C=NH (ethenimine) | Ab initio <sup>[b]</sup> | 44.6                                    | 59.8                      |
| CH=C-NH <sub>2</sub> (ethynamine)  | Ab initio <sup>[b]</sup> | 58.9                                    | 60.8                      |
|                                    | Ab initio <sup>[b]</sup> | 17.7                                    | 58.1                      |
| CH <sub>3</sub> CN (acetonitrile)  | ATcT                     | 17.7                                    | 58.1                      |
|                                    | NIST                     | $(17.7 \pm 0.1)^9$ ; 15.7 <sup>10</sup> | N/A                       |
|                                    | Ab initio <sup>[b]</sup> | -11.1                                   | 46.1                      |
| NH <sub>3</sub>                    | ATcT                     | -10.9                                   | 46.0                      |
|                                    | NIST                     | -11.08                                  | 46.18                     |
|                                    | Ab initio <sup>[b]</sup> | 135.0                                   | 51.8                      |
| CH=C                               | ATcT                     | 135.8                                   | 51.0                      |
|                                    | NIST                     | $(133.0 \pm 2.0)^{11}$ ;114.08          | 49.68                     |

<sup>[a]</sup> Values collected from Burcat's online database, <u>http://garfield.chem.elte.hu/Burcat/burcat.html</u> (access date: April 2019); <sup>[b]</sup> This work calculated at W1U level of theory;  $\Delta_f H$  was calculated by atomization method.



**Figure S1:** Reaction pathway scheme of the  $C_2H_2 + NH_2$  reaction.







**Figure S2:** B3LYP/cc-pVTZ+d optimized geometries for the species involved in the  $C_2H_2 + NH_2$  reaction. All structures were obtained for the lowest-energy conformer of a given species. Bond lengths are in Å and angles are in degree (°). <sup>a</sup> From the work of Moskaleva *et al.*<sup>4</sup>; <sup>b</sup> from the work of Kuchitsu<sup>12</sup> and <sup>c</sup> from the work of Herzberg<sup>13</sup>.



**Figure S3**: Geometrical parameters of **TS1** and **TS\_abs**, optimized at B3LYP (black), M06-2X (blue), UCCSD (pink) and UCCSD(T) (red) with two basis sets, cc-pVTZ+d<sup>[a]</sup> and cc-pVDZ<sup>[b]</sup>. Units are in Å.









TS1











**Figure S4:** Hindrance potentials for the species involved in the  $C_2H_2 + NH_2$  reaction, calculated at B3LYP/6-311G(2d,d,p) level of theory.



**Figure S5:** IRC plot for the addition of  $NH_2$  to  $C_2H_2$  (via TS1) calculated at B3LYP/cc-pVTZ+d level of theory. Distances are in Å.





**Figure S6:** Linear energy relationship (LER) between reaction energy,  $\Delta E_{rxn}$ , and reaction barrier heights,  $\Delta V^{\ddagger}$ , calculated at W1U level of theory (0 K): N-addition (a) and H-abstraction (b) reactions. Zero-point energy corrections were included. Note that there are two different sites, namely, terminal and non-terminal (denoted by the underlined carbons as in Fig. S6a) for propylene.



**Figure S7:** Calculated rate constants, k(T, P), for the C<sub>2</sub>H<sub>2</sub> + NH<sub>2</sub>  $\rightarrow$  products as a function of temperature at P = 1 torr.





**Figure S8:** Time-resolved species profiles for the  $C_2H_2 + NH_2 \rightarrow \text{products}$ , simulated at T = 1000 K and P = 760 torr (a); T = 298 K and P = 76000 torr (b) and T = 298 K and P = 1 torr (c) using stochastic approach:  $[C_2H_2]/[N_2] = 10^{-3}$ ,  $[C_2H_2]_0 \gg [NH_2]_0$  and the numbers of trials = 10<sup>6</sup>. The calculations were carried out using the full PES described in Figure 1 (in main text).

## References

- (1) T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume 1, NSRDS NBS-39,
- (2) M.E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules. *J. Phys. Chem.Ref. Data* **1994**, *Monograph 3*
- (3) K.P. Huber, G. Herzberg, *Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules*, Van Nostrand Reinhold Co, 1979.
- (4) L.V. Moskaleva, M.C. Lin, Theoretical Study of the NH<sub>2</sub>+C<sub>2</sub>H<sub>2</sub> Reaction. J. Phys. Chem. A 1998, 102 (24), 4687-4693.
- (5) B. Ruscic; R.E. Pinzon; G.v. Laszewski; D. Kodeboyina; A. Burcat; D. Leahy; D. Montoya, A.F. Wagner, J. Phys.: Conf. Ser. 2005, 16, 561-570.
- (6) B. Ruscic; R.E. Pinzon; M.L. Morton; N.K. Srinivasan; M.C. Su; J.W. Sutherland, J.V. Michael, Active Thermochemical Tables: accurate enthalpy of formation of hydroperoxyl radical, HO<sub>2</sub>. *J. Phys. Chem. A* **2006**, *110* (21), 6592-6601.
- (7) J.A. Manion, Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons. *J. Phys. Chem. Ref. Data* **2002**, *31* (1), 123.
- (8) M.W. Chase, Jr, NIST-JANAF Thermochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data, Monograph 9 1998, 1-1951.

- (9) X.-W. An, M. Månsson, Enthalpies of combustion and formation of acetonitrile. J. Chem. *Thermodyn.* **1983**, *15* (3), 287-293.
- (10) J.H. Baldt, H.K.K. Hall, Thermochemistry of strained-ring bridgehead nitriles and esters. J. Am. Chem. Soc. 1971, 93 (1), 140-145.
- (11) W. Tsang, Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals. *Martinho Simoes, J.A.; Greenberg, A.; Liebman, J.F., eds., Blackie Academic and Professional, London* **1996**, 22-58.
- (12) K. Kuchitsu(ed), *Structure of Free Polyatomic Molecules Basic Data*, Springer, Berlin, 1998.
- (13) G. Herzberg, *Electronic spectra and electronic structure of polyatomic molecules*, Van Nostrand, New York, 1966.