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1 Substrate refractive index

Sellmeier dispersion formula was used to model refractive index spectrum of glass substrate:

n2(λ)− 1 =
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

(1)

with coefficients adopted provided fro Scott BK7 glass: B1 = 1.03961212, B2 = 0.231792344,

B3 = 1.01046945, C1 = 0.00600069867 µ2, C2 = 0.0200179144 µ2 and C3 = 103.560653 µ2.

2 Transmittance and reflectance of thin flat sample

We will use analytical theory developed by Barybin and Shapovalov,1 and will apply it to the

sample structure presented in Figure 1. Essential assumptions for for our case is that medium

1 (perovskite layer) is a thin homogeneous layer with thickness d1 (d1 is in order of magnitude

of the wavelength), and medium 2 is a thick transparent substrate (thick means much larger

than the wavelength). We will assume that only medium 1 is photo-active, meaning that

upon excitation its complex refractive index may change in time ñ1(t) = n1(t) + ik1(t), or

n1 = n1(t) and k1 = k1(t). The aim is to find relations between the measurable values, such

as reflectance and transmittance coefficients, and parameters of interest, n1(t) and k1(t).

First we will derive equations for the static transmittance T = T (n1, k1) and reflectance

R = R(n1, k1) dependences, and then will analyse how a small change of n1 and k1 affects T

and R.
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2.1 Static transmittance and reflectance

A general equations for reflectance, R, and transmittance, T , are (eqs. (60) and (61) in Ref.

1). The measurements are carried our in air, therefore n0 = 1 and n3 = 1, and

R =
L− +M cos(2β1d1 + ϕ−)

L+ +M cos(2β1d1 + ϕ+)
(2)

T =
16n0|ñ1|2|ñ2|2n3

L+ +M cos(2β1d1 + ϕ+)

=
16(n2

1 + k21)n2
2

L+ +M cos(2β1d1 + ϕ+)

(3)

where β1 = 2π
λ
n1 and λ is the wavelength. Other parameters in the equations are modulation

coefficient M (following are the eqautions from Ref. 1 adopted to our case)

M(n1) = (n2
0 − n2

1)(n
2
1 − n2

2)(n
2
2 + n2

3)

= (1− n2
1)(n

2
1 − n2

2)(n
2
2 + 1)

(4)

the phase angle ϕ± is given by

tanϕ± =
m±
M

k1
n1

(5)

with

m±(n1, k1) = 2n1[−2(n2
0 − n2

1)n
2
2n3 ± n0(n

2
1 − n2

2)(n
2
2 + n2

3)]

= 2n1[−2(1− n2
1)n

2
2 ± (n2

1 − n2
2)(n

2
2 + 1)]

(6)

In the near infra red (NIR) part of the spectrum one can use approximation of a slightly

absorbing medium (n2
1 � k21), then eq. (5) can be simplified

ϕ±(n1, k1) '
m±(n1)

M(n1)

k1
n1

(7)
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L± are the losses parameters introduced as

L±(n1, k1) = a± cosh(2α1d1) + b± sinh(2α1d1)

= a±(n1) cosh

(
4πd1
λ

k1

)
+ b±(n1) sinh

(
4πd1
λ

k1

) (8)

where d1 is the thickness of photo-active layer, and

a±(n1) = (n2
0 + n2

1)(n
2
1 + n2

2)(n
2
2 + n2

3)± 8n0n
2
1n

2
2n3

= (1 + n2
1)(n

2
1 + n2

2)(n
2
2 + 1)± 8n2

1n
2
2

(9)

b±(n1) = 2n1[2(n2
0 + n2

1)n
2
2n3 ± n0(n

2
1 + n2

2)(n
2
2 + n2

3)]

= 2n1[2(1 + n2
1)n

2
2 ± (n2

1 + n2
2)(n

2
2 + 1)]

(10)

For optically transparent medium, e.g. in the NIR, one can notice that φ is a small value,

φ = 4πd1
λ
k1 → 0, and can use approximation cosh(φ) ' 1 and sinh(φ) ' φ, which gives

L±(n1, k1) ' a±(n1) + b±(n1)
4πd1
λ

k1 (11)

However, in practice this means k1 < 0.01 λ
d1

and since for our sample λ
d1
≈ 1, we come

to the relation k1 < 0.01. This is satisfied at λ > 800 nm reasonably well but not at

shorter wavelengths, in which case eq. (8) must be used. At this point we have two criteria

for “slightly absorbing” or “optically transparent” medium, one comes from comparison of

n2
1 � k21 and another from a small phase shift φ ≈ 0. The former is less restrictive since

in the visible part of the spectrum n1 > 2 and k1 ≈ 0.2 at 700 nm which means that

n2
1 > 100 k21 and this approximation should be reasonably accurate even in the visible part

of the spectrum.

All the above equations were taken from Ref. 1 with the assumption of n0 = 0 and

n3 = 0, or the measurements carried out in air. The wavelength dependence is hidden under

parameters β1 = 2π
λ
n1(λ) and ñ1 = n1(λ) + ik1(λ) = n1(λ) + i 1

2π
λα1(λ), or there are three
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wavelength dependent parameters n1(λ), k1(λ) and n2(λ). These equations were used to

calculate transmission and reflection coefficients and absorbance spectra of the sample from

known spectra of n1(λ), k1(λ) and n2(λ) by adjusting the perovskite layer thickness, d1 as

presented in Figure 2.

2.2 Transient reflectance and transmittance

Next we will use these are equations to analyse the effect of changing absorption or refractive

index of the perovskite layer (medium 1) or both on reflectance, R, and transmittance, T .

The functional dependence on n1 and k1 is

R(n1, k1) =
L−(n1, k1) +M(n1) cos

(
4πd1
λ
n1 + m−(n1)

M(n1)
k1
n1

)
L+(n1, k1) +M(n1) cos

(
4πd1
λ
n1 + m+(n1)

M(n1)
k1
n1

) (12)

T (n1, k1) =
16(n2

1 + k21)n2
2

L+(n1, k1) +M(n1) cos
(

4πd1
λ
n1 + m+(n1)

M(n1)
k1
n1

) (13)

Expressions for R and T have the same denominator, therefore it is reasonable to introduce

A = L+(n1, k1) +M(n1) cos

(
4πd1
λ

n1 +
m+(n1)

M(n1)

k1
n1

)
= L+(n1, k1) +M(n1) cos

(
4πd1
λ

n1 + ϕ+

) (14)

and

B = L−(n1, k1) +M(n1) cos

(
4πd1
λ

n1 +
m−(n1)

M(n1)

k1
n1

)
= L−(n1, k1) +M(n1) cos

(
4πd1
λ

n1 + ϕ−

) (15)
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which gives simple forms for R and T :

R =
B

A
(16)

T =
16(n2

1 + k21)n2
2

A
(17)

Experiments are carried out with low excitation density, therefore we can limit our consid-

eration by small changes of the refractive index real psrt n1(t) = n1 +4n1(t) and imaginary

part k1(t) = k1+4k1(t) (not that absorption coefficient is α = 2πk1/λ). Thus we can expect

only a small change of the reflectance and transmittance, and within the linear approximation

this gives

R(t) ' R +
dR

dn1

4n1(t) +
dR

dk1
4k1(t) = R +R′n4n1(t) +R′k4k1(t) = R +4R (18)

T (t) ' T +
dT

dn1

4n1(t) +
dT

dk1
4k1(t) = T + T ′n4n1(t) + T ′k4k1(t) = T +4T (19)

where R′n, R′k, T ′n and T ′k are derivatives of R and T over n1 and k1, respectively. Therefore,

next we need to calculate the derivatives. Starting with eqs. (16) and (17)

R′n =
dR

dn1

=
dB
A

dn1

=
B′nA−BA′n

A2
(20)

T ′n =
d

dn1

[
16(n2

1 + k21)n2
2

A

]
= 16n2

2

2n1A− (n2
1 + k21)A′n

A2
(21)
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where

A′n =
dA

dn1

=
d

dn1

[
L+(n1, k1) +M(n1) cos

(
4πd1
λ

n1 + ϕ+

)]
= L′+n +M ′

n cos

(
4πd1
λ

n1 + ϕ+

)
−M sin

(
4πd1
λ

n1 + ϕ+

)(
2πd1
λ

+ ϕ′+n

) (22)

B′n =
dB

dn1

=
d

dn1

[
L−(n1, k1) +M(n1) cos

(
4πd1
λ

n1 + ϕ−

)]
= L′−n +M ′

n cos

(
4πd1
λ

n1 + ϕ−

)
−M sin

(
4πd1
λ

n1 + ϕ−

)(
2πd1
λ

+ ϕ′−n

) (23)

and

R′k =
dR

dk1
=
dB
A

dn1

=
B′kA−BA′k

A2
(24)

T ′k =
d

dk1

[
16(n2

1 + k21)n2
2

A

]
= 16n2

2

2k1A− (n2
1 + k21)A′k

A2
(25)

where

A′k =
dA

dk1
=

d

dk1

[
L+(n1, k1) +M(n1) cos

(
4πd1
λ

n1 + ϕ+

)]
= L′+k −M sin

(
4πd1
λ

n1 + ϕ+

)
ϕ′+k

(26)

B′k =
dB

dk1
=

d

dk1

[
L−(n1, k1) +M(n1) cos

(
4πd1
λ

n1 + ϕ−

)]
= L′−k −M sin

(
4πd1
λ

n1 + ϕ−

)
ϕ′−k

(27)

and L′±n, L′±k, M ′
n, M ′

k, ϕ′±n and ϕ′±k are corresponding derivatives.
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M ′
n =

dM

dn1

=
d[(1− n2

1)(n
2
1 − n2

2)(n
2
2 + 1)]

dn1

= −2n1(n
2
1 − n2

2)(n
2
2 + 1) + 2n1(1− n2

1)(n
2
2 + 1)

= 2n1(n
2
2 + 1)(n2

2 + 1− 2n2
1)

(28)

m′±n =
dm±
dn1

= 2
d

dn1

n1[−2(1− n2
1)n

2
2 ± (n2

1 − n2
2)(n

2
2 + 1)]

= 2{−2(1− n2
1)n

2
2 ± (n2

1 − n2
2)(n

2
2 + 1) + n1[4n1n

2
2 ± 2n1(n

2
2 + 1)]}

= 2[2n2
1n

2
2 − 2n2

2 + 4n2
1n

2
2 ± (n2

1n
2
2 + n2

1 − n4
2 − n2

2 + 2n2
1n

2
2 + 2n2

1)]

= 2[6n2
1n

2
2 − 2n2

2 ± (3n2
1 + 3n2

1n
2
2 − n4

2 − n2
2)]

(29)

or

m′+n = 2(6n2
1n

2
2 − 2n2

2 + 3n2
1 + 3n2

1n
2
2 − n4

2 − n2
2) = 2(9n2

1n
2
2 + 3n2

1 − 3n2
2 − n4

2) (30)

m′−n = 2(6n2
1n

2
2 − 2n2

2 − 3n2
1 − 3n2

1n
2
2 + n4

2 + n2
2) = 2(3n2

1n
2
2 − 3n2

1 − n2
2 + n4

2) (31)

a′±n =
da±
dn1

=
d

dn1

[(1 + n2
1)(n

2
1 + n2

2)(n
2
2 + 1)± 8n2

1n
2
2]

= 2n1(n
2
1 + n2

2)(n
2
2 + 1) + 2n1(1 + n2

1)(n
2
2 + 1)± 16n1n

2
2

= 2n1(n
2
2 + 1)(2n2

1 + n2
2 + 1)± 16n1n

2
2

(32)

or

a′+n =
da+
dn1

= 2n1[(n
2
2 + 1)(2n2

1 + n2
2 + 1) + 8n2

2] (33)

a′−n =
da−
dn1

= 2n1[(n
2
2 + 1)(2n2

1 + n2
2 + 1)− 8n2

2] (34)
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b′±n =
db±
dn1

=
d

dn1

2n1[2(1 + n2
1)n

2
2 ± (n2

1 + n2
2)(n

2
2 + 1)]

= 4(1 + n2
1)n

2
2 ± 2(n2

1 + n2
2)(n

2
2 + 1) + 2n1[4n1n

2
2 ± 2n1(n

2
2 + 1)]

= 4n2
2(1 + 3n2

1)± 2(n2
2 + 1)(3n2

1 + n2
2)

= 2[2n2
2 + 6n2

1n
2
2 ± (3n2

1n
2
2 + n4

2 + 3n2
1 + n2

2)]

(35)

or

b′+n =
db+
dn1

= 2(3n2
2 + 9n2

1n
2
2 + n4

2 + 3n2
1) (36)

b′−n =
db−
dn1

= 2(n2
2 + 3n2

1n
2
2 − n4

2 − 3n2
1) (37)

Parameter L± depends on both n1 and k1, and in small absorption approximation of eq.

(11)

L′±n =
dL±(n1, k1)

dn1

' da±(n1)

dn1

+
4πd1k1
λ

db±(n1)

dn1

= a′±n +
4πd1k1
λ

b′±n

(38)

L′±k =
L±(n1, k1)

dk1
' a±(n1) + b±(n1)

4πd1
λ

(39)

Otherwise (eq. (8))

L′±n =
dL±(n1, k1)

dn1

= a′±n cosh

(
4πd1
λ

k1

)
+ b′±n sinh

(
4πd1
λ

k1

)
(40)

and

L′±k =
L±(n1, k1)

dk1
=

4πd1
λ

[
a±(n1) sinh

(
4πd1
λ

k1

)
+ b±(n1) cosh

(
4πd1
λ

k1

)]
(41)
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Another parameter which depends on both n1 and k1 is ϕ±:

ϕ′±k =
dϕ±(n1, k1)

dk1
' m±(n1)

M(n1)n1

(42)

ϕ′±n =
dϕ±
dn1

' k1
Mn1

dm±
dn1
−m±

[
n1

dM
dn1

+M
]

M2n2
1

=
k1

M2n2
1

[
Mn1m

′
± −m±n1M

′ −m±M
]

=
k1

M(n1)n1

[
m′±n(n1)−

m±(n1)

M(n1)
M ′

n(n1)−
m±(n1)

n1

] (43)

Though one can notice that in the small absorption limit dϕ±(n1,k1)
dn1

' 0. However this

approximation has to be used with caution as was discussed above.

2.3 The measured values

Our pump-probe instrument saves data assuming measurements in transmission mode and

recalculating the result to the change of optical density. If the optical density changes by

4OD then the monitoring light intensity is

I = Iin10−(OD+4OD) = Iin10−OD10−4OD = I010−4OD (44)

where I0 is he monitoring light intensity after non-excited sample. Thus the program saves

4OD = − log

(
I

I0

)
= − log

(
1 +
4I
I0

)
(45)

In transmittance mode monitoring intensity changes as I = Iin(T +4T ) = I0 + Iin4T =

I0(1 + 4T
T

). Therefore, relation between 4OD and 4T is

4OD(4T ) = − log

(
1 +
4T
T

)
(46)

Similarly, in reflection mode
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4OD(4R) = − log

(
1 +
4R
R

)
(47)

In both cases a relative change of either transmittance or reflectance can be restored from

the measured data, for reflectance one obtains

4R(t, λ)

R(λ)
+ 1 =

R +4R
R

= 10−4OD(t,λ) (48)

Denominator can be modeled by eq. (18), thus

4R = R
(
10−4ODR − 1

)
= R′n4n1 +R′k4k1 (49)

and similarly for transmittance mode

4T = T
(
10−4ODT − 1

)
= T ′n4n1 + T ′k4k1 (50)

where 4ODR and 4ODT are saved measurements in reflectance and transmittance modes,

respectively.

Eqs. (49) and (50) present a simple system of two linear equations which can be solved.

Determinant of the system is R′nT ′k − T ′nR′k, and solutions are

4n1 =
4RT ′k −4TR′k
R′nT

′
k − T ′nR′k

(51)

4k1 =
4TR′n −4RT ′n
R′nT

′
k − T ′nR′k

(52)

Here 4R = R(10−4ODR − 1) and 4T = T (10−4ODT − 1) are composed of “purely” exper-

imental data, 4ODR and 4ODT spectra, and “model” spectra, R and T , though R and

T can be measured, and at least T can be measured with reasonably high accuracy. How-

ever, derivatives R′n, R′k, T ′n and T ′k are “purely” model values, but can be calculated using

equations derived above.
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In conclusion, at each wavelength we have to measured values, 4ODR and 4ODT , and

we calculate two values of our interest, 4n1 and 4k1, using eqs. (51) and (52), for which

we first calculate derivatives R′n, R′k, T ′n and T ′k, which, in turn, depends on “static” values

n1 and k1, and d1. In this study we used previously reported values of n1 and k1 (these are

experimentally available values), and we did some fine tuning of d1 as explained in the main

text. But calculations were done at each wavelength independently by solving system of two

linear equations, meaning that these are exact solutions.

3 Pump-probe measurements

3.1 Measurements, data presentation and dispersion correction

The raw transient absorption data after group velocity dispersion compensation are presented

in Figures S1.

Figure S1: Color map presentation of the transient absorption responses of the sample
measured in transmittance mode in the red part of the spectrum. Excitation wavelength
was 600 nm. The time scale is linear till 1 ps and logarithmic after that.
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3.2 Excitation density dependence

0 1000 2000 3000 4000 5000

time, ps

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

∆
A

, 
n
o
rm

.

Excitation, µW 
10
30
65
100

Figure S2: Color map presentation of the transient absorption responses of the sample
measured in transmittance mode in the red part of the spectrum. Excitation wavelength
was 600 nm. The time scale is linear till 1 ps and logarithmic after that.

There excitation density dependence was studied by using gray filters to attenuate exci-

tation energy and repeating pump-probe measurements in the band gap region. The average

excitation power was measured to control the excitation power density. The normalized tran-

sient absorption decays at 750 nm are shown in Figure S2. The excitation energy range for

this data is 10–100 µW. There is no change in the lifetime up to 30 µW excitation intensity.

The excitation repetition rate was 1 kHz and the excitation spot size was roughly 1 mm2.

Thus excitation energy density corresponding to 30 µW power is 3 µJ cm−2.

4 Fresnel equations and transfer matrix method

Wavevectors before and after air-perovskite interface:

k21 =
ω2

c2
n2
1 (53)

k22 =
ω2

c2
n2
2 (54)
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Figure S3: Wavevectors before and after interface

where ω is angular frequency, c is speed of light in vacuum and n is refractive index. Relation

of wavevector to refractive index and extinction coefficient κ is

k =
2π(n+ iκ)

λ0
(55)

where λ0 is wavelength in vacuum.

Wavevectors normal to interface (tangential components kt1 and kt2 are equal):

k2n1 = k21 cos2 (θ1) (56)

k2n2 = k22 − k21 sin2 (θ1) (57)

where θ1 is the angle of incidence.
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Reflection and transmission coefficients2 for TE polarization are

r12 =
kn1 − kn2
kn1 + kn2

(58)

t12 =
2kn1

kn1 + kn2
(59)

and for TM polarization

r12 =
n2
1kn2 − n2

2kn1
n2
1kn2 + n2

2kn1
(60)

t12 =
2n1n2kn1

n2
1kn2 + n2

2kn1
(61)

With small angle of incidence the difference between TE and TM polarization is also small.

Transfer matrix of 1) air-perovskite interface, 2) propagation in perovskite, 3) perovskite-

glass interface is

M =
1

t12

 1 r12

r12 1


ejknL 0

0 e−jknL

 1

t23

 1 r23

r23 1

 (62)

M =
1

t12t23

e
jknL + r12r23e

−jknL r12e
−jknL + r23e

jknL

r12e
jknL + r23e

−jknL e−jknL + r12r23e
jknL

 (63)

where L is the thickness of the perovskite layer and r23 and t23 are coefficients of perovskite-

glass interface.

Reflectance and transmittance coefficients of the whole system are

r =
M21

M11

(64)

t =
1

M11

(65)
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and the reflectance and transmittance of the perovskite film on infinite glass substrate are

Rp = |r|2 (66)

Rp =

∣∣∣∣r12ejknL + r23e
−jknL

ejknL + r12r23e−jknL

∣∣∣∣2 (67)

Tp =
n2

√
1− n2/n1 sin θ1
n1 cos θ1

|t|2 (68)

Tp =
n2

√
1− n2/n1 sin θ1
n1 cos θ1

∣∣∣∣ t12t23
ejknL + r12r23e−jknL

∣∣∣∣2 (69)

Figure S4: Reflection from substrate

With finite substrate taken into account the reflectance and transmittance are

R = Rp +Rg
(1−Rp)(1−Rg)e

−2αL

1−RpRge−2αL
(70)

T =
(1−Rp)(1−Rg)e

−αL

1−RpRge−2αL
(71)

where Rp is previously calculated reflectance from perovskite film and Rg is reflection of

glass-air interface:

Rg = |r34|2 (72)

and α is absorbance coefficient of perovskite (glass is assumed to have no absorbance).
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The changes of reflectance and transmittance by excitation are in percentages

∆R =
R2 −R1

R1

· 100% (73)

∆T =
T2 − T1
T1

· 100% (74)

where R1, T1 are reflectance and transmittance before excitation and R2, T2 after excitation.

Conversion to mOD units:

∆R[mOD] = −log10(
∆R

100
+ 1) · 1000 (75)

∆T [mOD] = −log10(
∆T

100
+ 1) · 1000 (76)
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Figure S5: Simulated steady-state transmittance and reflectance from perovskite thin film
on glass. Perovskite thickness was 522nm, angle of incidence 8◦ and polarization TM for the
simulations

18


