Dry reforming activity due to ionic Ru in

$La_{1.99}Ru_{0.01}O_3$: Role of specific carbonates

Bhanu P. Gangwar, a,† Phanikumar Pentyala, b,† Khushbo Tiwari, c Krishanu Biswas, c

Sudhanshu Sharma, a,* Parag A. Deshpande b,*

^aDepartment of Chemistry, Indian Institute of Technology Gandhinagar, Palaj,

Gandhinagar, Gujarat 382355, India.

 b Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering,

Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

 $^c\mathrm{Department}$ of Materials Science and Engineering, Indian Institute of Technology Kanpur,

Kanpur 208016, India.

*Corresponding authors: parag@che.iitkgp.ac.in (P. A. Deshpande), Phone:

 $(+91)\mbox{-}3222\mbox{-}283916;$ ssharma@iitgn.ac.in (S. Sharma), Phone: 9727696682, Fax:

+91-79-23972324, 23972583

[†]These authors have contributed equally to the study

Supporting information

Figure S1: TEM images of as-synthesized (a-b) $La_{1.99}Ru_{0.01}O_3$. HR-TEM images of (c) $La_{1.99}Ru_{0.01}O_3$ and (d) $La_{1.98}Ru_{0.02}O_3$. STEM-HAADF analyses are shown in (e-n).

Figure S2: XPS survey scan for $La_{1.99}Ru_{0.01}O_3$ and $La_{1.98}Ru_{0.02}O_3$ catalysts. The inset image show expended region for Cl(2p).

Figure S3: Time-on-stream stability test of $La_{1.99}Ru_{0.01}O_3$ in a fixed-bed reactor at 850 °C for 32 h. Reaction conditions: $CO_2/CH_4 = 1$, $CO_2:CH_4:N_2 = 1:1:18$ (total flow rate = 20 sccm), $GHSV = 20000 h^{-1}$.

Table S1: Elemental compositions of 0.5 atom % Ru doped La2O3 (La199Ru001O3) and 1 atom% Ru doped La2O3 (La198Ru002O3) catalysts obtained by ICP-OES analysis

Catalyst type	La (mg/kg)	La (%) ± error	Ru (mg/kg)	Ru (%) ± error
$La_{1.99}Ru_{0.01}O_3$	1497000	99.75 ± 5	3662.4	0.25 ± 0.013
$La_{1.98}Ru_{0.02}O_3$	1348600	99.47 ± 5	7118.0	0.53 ± 0.027

Table S2: C-O bond lengths (Å) of different carbonates observed on $La_{2-2x}Ru_{2x}O_3$ and $La_{2-2x}Ru_{2x}O_{3-\delta}$

	LR_{C1}	LR_{C2}	LRV_{C1}	LRV_{C2}
C-01	1.28	1.28	1.28	1.28
C-O2	1.3	1.28	1.29	1.29
C-O3	1.32	1.36	1.33	1.36

Sample calculation for deterination of OSC

No of hydrogen moles through calibration plot

 $Y = 2.331 * 10^7 X + 38.942$

Where Y = area, $X = moles of H_2$ uptake

 $193 = 2.331 * 10^{7}X + 38.94$

154.1 = 2.331*10⁷X (Moles are estimated by running <u>TPR</u> of known amount of <u>CuO</u>)

 $X = 66.1089 * 10^{-7}$ moles

= 66.1089*10⁻⁷ moles/50 mg (because, 50 mg sample is taken for experiment)

Molecular weight of $La_2O_3 = 325.8$ moles/g

Oxygen storage capacity (consumed oxygen) = $325.8*1.32*10^{-4} \approx 0.043$

Oxygen atom (O) = 3-0.043 ≈ 2.96

Hence La₂O₃ after reduction becomes La₂O_{2.96}