
Physical properties of  RIr3 (R = Gd, Tb, Ho) compounds with coexisting 
polymorphic phases

Binita Mondala,b,  Shovan Danc,  Sudipta Mondala,,d R. N. Bhowmike,  R. Ranganathana and Chandan 
Mazumdara,*

aCondensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
bK.K.M. College, Jamui, Bihar 811307, India

cDepartment of Physics, The University of Burdwan, Burdwan 713104, West Bengal, India
dK.S.S College, Lakhisarai, Bihar 811311, India

eDepartment of Physics, Pondicherry University, R.V. Nagar, Kalapat, Pondicherry 605014, India
*chandan.mazumdar@saha.ac.in

Heat Capacity:

The total heat capacity of a material in the paramagnetic region consists of two contributions: electronic (γT) and 
Phononic (Cphonon). The phononic contribution was first explained by Einstein, who assumed that a solid composed 
of N atoms can be represented as 3N independent harmonic oscillators having same frequency [1, 2]. The Einstein 
contribution can be written as [1, 3],
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where NE is the number of Einstein oscillators, x = θE/T, θE is the Einstein temperature. However, it was found that 
the Einstein model appears to be quite inadequate to describe the experimentally observed specific heat behavior at 
low temperature region for most of the solids [1, 2, 4]. Following this, Debye had modified Einstein model by 
assuming that the solid consisting of a set of coupled oscillator instead of independent oscillators [1, 2, 4], where the 
phononic contribution to heat capacity takes the following form [1, 3],
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 where ND is the number of Debye oscillators and x = θD /T, θD being the Debye temperature. The modification 
proposed by Debye indeed able to explain the low temperature heat capacity data in much better way than Einstein 
model. The Debye model still cannot describe the experimental heat capacity behavior over the entire temperature 
region, as it works well below θD /50 and above θD /10 only [1]. The quantitative mismatch in the intermediate 
temperature region has its origin in the fact that the phonon dispersion phenomenon was not taken into account in 
the Debye model. Since neither a single Einstein model nor a single Debye model can describe the experimental 
outcome over the whole temperature range, a combination of both the contributions generally used to describe the 
overall heat capacity behavior [5, 6, 7, 8, 9, 10, 3], that can be expressed as [9, 1]
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The parameter η determines the relative weight age of the two contributions.
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Critical behavior of the magnetization and susceptibility:

Critical analysis study utilizes the fact that any phenomena that take place in the vicinity of the phase transition 

temperature can be associated with a power law behavior of the reduced temperature ( ). For example, 
𝜀 =  

(𝑇 - 𝑇𝐶)
𝑇𝐶

magnetic correlation length ξ can be expressed as  , where  is known as critical exponent.𝜉 =  𝜉0|𝜀| - 𝜐
𝜐

Following the same argument, one can express several other physical quantities viz., MS(T), χ0(T), M(H, T = TC), 
C(T), etc. with similar power law expression as [11, 12, 13, 14]:
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 where M0, h0/M0, A0 and C0 are the critical amplitudes, MS is the spontaneous magnetization, χ0 is the initial 
susceptibility. Depending on the characteristic of various universality classes, viz. 2D Ising model, 3D Ising model, 
mean field, 3D Heisenberg model, tricritical mean field, XY model etc. the critical exponents α, β, γ and δ can 
assume different set of values (see table S1). Conversely by carrying out critical analysis and obtaining the values of 
α, β, γ and δ, one may associate the compound with the universality class it belongs to. The values of critical 
exponents associated with different universal class are given in table S1.

Table S1: Value of critical exponents according to different ideal model [15, 16, 17, 18].

α β γ δ
Mean field 0 0.5 1.0 3.0
2D Ising 0 0.12 1.75 15
3D Ising 0.11 0.32 1.24 4.82
3D Heisenberg -0.11 0.36 1.38 4.90
3D XY -0.007 0.34 1.34 4.8
Tricritical mean field 0.5 0.25 1.0 5.0

It must be pointed out here that although, the power law behavior expressed in eqns. S2, S3, S4, S5 are independent 
to each other, but the critical exponents are not so. The critical exponents can be linked using different scaling 
relations. For example, magnetization M(H, T) can be expressed using two independent functions of H and T as,

𝑀(𝐻,𝑇) = 𝐹(𝑇) × 𝐺(𝑇,𝐻)      ……..  𝑆6



 where F(T) is a function of T alone, while G(T,H) is a function of both T and H. Solving analytically one can 
rewrite eqn. S6 as,

     ……..  S7
                                                                     𝑀(𝐻,𝜀) =  (𝜀)𝛽𝑓 ± [𝐻

𝜀𝛾 + 𝛽]

where f+ and f- are the functions of temperatures above and below TC, respectively [11, 12]. Using different 
boundary conditions, one can obtain a scaling relationship,

                  …….       S8
                                                                       𝛿 = 1 + (𝛾

𝛽)
which is widely known as Widom scaling relation [13, 19].

If the scaled or renormalized magnetization and magnetic field are defined as,  and 𝑚 =  |𝜀| - 𝛽𝑀(𝐻,𝜀)

 eqn. S7reduces to a simple form,h = |𝜀| - (𝛾 + 𝛽)𝐻 

𝑚 = 𝑓 ± (h)           …..…        𝑆9

This equation is quite significant as it shows that with appropriate choice of a particular set of β, γ and δ the scaled 
magnetization m as a function of scaled field h taken at different temperatures can essentially be converged to two 
different universal curves: f+(h) for temperatures above TC and f-(h) for temperatures below TC.

As shown in eqns. S2, S3, S4, S5 different measurements can be employed to estimate different critical exponents. 
For example, by studying the isothermal magnetization close to critical temperature, eqn. S4 indicates that one can 
obtain information on δ (and subsequently on α and β). From table 1 we see that for mean field like variation δ is 
close to 3, that is eqn. S4 reduces to

      𝑀 =  𝐴0𝐻1 3                                …….   𝑆10

where A0 is a constant. This is generally known as Arrott equation [20]. Using this equation a set of magnetic 
isotherms obtained experimentally near TC can be turned into another set of parallel straight lines in the M2 vs. H/M 
representation. This reconstructed magnetic isotherms are called Arrott plot [20]. The magnetic isotherm of Arrott 
plot that passes through origin defines the TC. However, the material that does not obey mean field approximation 
cannot produce such set of parallel straight lines. A more generalized equation has been provided by Arrott and 
Noaks as [21],

(𝐻 𝑀)1 𝛾 = 𝑎(𝑇 - 𝑇𝐶

𝑇𝐶 ) + 𝑏𝑀1 𝛽       ……        𝑆11

(where a and b are constants) which is used to obtain a set of parallel straight lines in the M1/β vs. (H/M)1/γ 
representation. This plot obeying Arrott-Noakes equation of state is often referred as modified Arrott plot [21]. Thus 
self consistent values of β, γ and δ can be obtained by same set of data (isothermal magnetization) using different 
analytical approach as presented in eqns. S2, S3, S4, S5 and S11.



Figure S1: Critical behavior of TbIr3: (a) Isothermal magnetization curves at temperatures around (TC); (b) Arrott plot at different 
temperatures close to the Curie temperature (TC); (c) Modified Arrott plot. Solid lines are the linear fit of the isotherms at high 
temperature region. The isotherm close to the Curie temperature (TC ~ 40 K) almost passes through the origin; (d) Temperature 
dependence of spontaneous magnetization and inverse initial susceptibility. The solid lines are the fit to the power law eqns. S2, 
S3; (e) Kouvel-Fisher plot of spontaneous magnetization and inverse initial susceptibility. Solid lines are the linear fit to the data; 
(f) Critical isotherm close to the Curie temperature (TC). The inset shows the same on log-log scale. The solid line is the linear fit 
following eqn. S4; (g) Scaled magnetization below and above TC. This plot shows that all the data collapse onto two different 
curves: one below TC and another above TC. Inset shows the same on a log scale; (h) Heat capacity data on a reduced temperature 
scale below and above TC. The solid line is the linear fit following eqn. (7).



Figure S2: Critical behavior of HoIr3: (a) Isothermal magnetization curves at temperatures around (TC); (b) Arrott plot at different 
temperatures close to the Curie temperature (TC); (c) Modified Arrott plot. Solid lines are the linear fit of the isotherms at high 
temperature region. The isotherm close to the Curie temperature (TC ~ 12 K) almost passes through the origin; (d) Temperature 
dependence of spontaneous magnetization and inverse initial susceptibility. The solid lines are the fit to the power law eqns. S2, 
S3; (e) Kouvel-Fisher plot of spontaneous magnetization and inverse initial susceptibility. Solid lines are the linear fit to the data; 
(f) Critical isotherm close to the Curie temperature (TC). The inset shows the same on log-log scale. The solid line is the linear fit 
following eqn. S4; (g) Scaled magnetization below and above TC. This plot shows that all the data collapse onto two different 
curves: one below TC and another above TC. Inset shows the same on a log scale; (h) Heat capacity data on a reduced temperature 
scale below and above  TC. The solid line is the linear fit following eqn. (7).
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