

Supplemental Information

Pressure-Induced Ge_2Se_3 and Ge_3Se_4 Crystals with Low Superconducting Transition Temperatures

Hulei Yu¹ and Yue Chen^{1,*}

¹*Department of Mechanical Engineering, The University of Hong Kong,
Pokfulam Road, Hong Kong SAR, China*

(Dated: June 21, 2019)

The superconducting transition temperature was predicted using the Allen-Dynes modified McMillan's equation [1, 2]:

$$T_c = \frac{\omega_{log}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right]$$

where ω_{log} , μ^* , and λ are the logarithmic average frequency, the Coulomb pseudopotential, and the total EPC parameter. ω_{log} and λ were estimated based on the Eliashberg phonon spectral function $\alpha^2 F(\omega)$:

$$\lambda = 2 \int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} d\omega$$

$$\omega_{log} = \exp\left[\frac{2}{\lambda} \int_0^\omega \frac{\alpha^2 F(\omega) \log \omega}{\omega} d\omega\right]$$

A kinetic energy cut-off of 40 Ry was applied in all EPC calculations. To obtain the value of λ , a smearing value of 0.12 was used. Typical values of μ^* in between 0.1 and 0.14 were used in evaluating the T_c .

TABLE S1. Superconducting transition temperatures T_c of different Ge_2Se_3 and Ge_3Se_4 phases under pressures.

Compounds	Pressures (GPa)	Space groups	μ^*	T_c (K)
Ge_2Se_3	5	$R\bar{3}m$	0.1	1.35
			0.14	0.57
Ge_2Se_3	10	$P\bar{3}m1$	0.1	1.92
			0.14	0.96
Ge_2Se_3	15	$R\bar{3}m$	0.1	1.98
			0.14	0.98
Ge_3Se_4	40	$I\bar{4}3d$	0.1	4.50
			0.14	2.83
Amorphous Ge_2Se_3 [3]	>20	-	-	~ 2

TABLE S2. Space groups, lattice constants, and Wyckoff positions of different Ge-Se compounds and phases at selected pressures.

Compounds	Pressures (GPa)	Space groups	Lattice paramters	Wyckoff positions
Ge ₂ Se ₃	5	<i>R</i> 3 <i>m</i>	<i>a</i> = 3.660 Å <i>c</i> = 27.342 Å	Ge 3a (0,0,0.162) Ge 3a (0,0,0.293) Se 3a (0,0,0.776) Se 3a (0,0,0.561) Se 3a (0,0,0.011)
Ge ₂ Se ₃	10	<i>P</i> 3̄ <i>m</i> 1	<i>a</i> = 3.637 Å <i>c</i> = 8.598 Å	Ge 2d (0.333,0.667,0.806) Se 2d (0.333,0.667,0.360) Se 1a (0,0,0)
Ge ₂ Se ₃	15	<i>R</i> 3̄ <i>m</i>	<i>a</i> = 3.586 Å <i>c</i> = 25.180 Å	Ge 6c (0,0,0.399) Se 3a (0,0,0) Se 6c (0,0,0.789)
Ge ₃ Se ₄	40	<i>I</i> 4̄3 <i>d</i>	<i>a</i> = 7.547 Å	Ge 12a (0.375,0,0.25) Se 16c (0.069,0.069,0.069)

TABLE S3. The shortest bond lengths *L* and the mean coordination numbers *ñ* in Ge₂Se₃ and Ge₃Se₄. *ñ* _{$\alpha-\beta$} is the the mean number of nearest neighbors of β atoms around an α atom within a distance of 2.9 Å [4]. Amorphous data were reported at ambient conditions.

Phases	<i>L</i> _{Ge-Se} (Å)	<i>L</i> _{Ge-Ge} (Å)	<i>L</i> _{Se-Se} (Å)	<i>ñ</i> _{Ge-Se}	<i>ñ</i> _{Ge-Ge}	<i>ñ</i> _{Se-Se}
Ge ₂ Se ₃	<i>R</i> 3 <i>m</i> 5GPa	2.55	3.57	3.43	3	0
	<i>P</i> 3̄ <i>m</i> 1 10GPa	2.54	3.64	3.19	6	0
	<i>R</i> 3̄ <i>m</i> 15 GPa	2.65	3.59	3.03	6	0
Ge ₃ Se ₄	Amorphous [4]	2.35	2.47	2.37	3.21	0.52
	<i>I</i> 4̄3 <i>d</i> 40GPa	2.50	3.53	2.92	8	0
	Amorphous [5]	2.35	2.48	-	2.73	1.37

* yuechen@hku.hk

- [1] P. B. Allen and R. C. Dynes, *Phys. Rev. B*, 1975, **12**, 905–922.
- [2] Z. Zhao, S. Zhang, T. Yu, H. Xu, A. Bergara and G. Yang, *Phys. Rev. Lett.*, 2019, **122**, 097002.
- [3] I. Berman and N. Brandt, *High Pressure Res.*, 1989, **1**, 301–305.
- [4] S. Le Roux, A. Bouzid, M. Boero and C. Massobrio, *Phys. Rev. B*, 2012, **86**, 224201.
- [5] T. Usuki, F. Araki, O. Uemura, Y. Kameda, T. Nasu and M. Sakurai, *Mater. Trans.*, 2003, **44**, 344–350.