The performance of adsorption, dissociation and diffusion mechanism of

hydrogen on the Ti-doped ZrCo(110) surface

Qingqing Wang,^a Xianggang Kong,^b Huilei Han,^c Ge Sang,^d Guanghui Zhang^d and Tao Gao^{*a}

^aInstitute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610064, China ^{*}Corresponding author, Email: gaotao@scu.edu.cn ^bCollege of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China ^cCollege of Mathematics, Sichuan University, Chengdu, 610064, China ^dScience and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9071-35, Jiangyou 621907, China

Table of contents

Fig. S1 Crystal structure of ZrCo alloys.

Fig. S2 a) initial state, b) transition state, c) transition state+3 d) final state Points, calculated states from H_2 dissociation on the pure surface.

Fig. S3 a) initial state, b) transition state, c) transition state+3 d) final state Points, calculated states from H_2 dissociation on the doped surfaces.

Table S1 The direct coordinates of ZrCo(110) and Ti-ZrCo(110) surface atoms in the z direction. Table S2 Adsorption energy (E_{ads}) and the distance of H from the surface after H atom adsorption on ZrCo(110). Table S3 Adsorption energy (E_{ads}) and the distance of H₂ from the surface after H₂ adsorption on ZrCo(110). Table S4 The adsorption energy (E_{ads}) of H atom adsorption on the Fe-doped ZrCo(110). Table S5 The adsorption energy (E_{ads}) of H atom adsorption on the Sc-doped ZrCo(110). Table S6 The adsorption energy (E_{ads}) of H atom adsorption on the Ni-doped ZrCo(110). Table S6 The adsorption energy (E_{ads}) of H atom adsorption on the Cu-doped ZrCo(110). Table S7 The adsorption energy (E_{ads}) of H atom adsorption on the Cu-doped ZrCo(110). Table S8 The adsorption energy (E_{ads}) of H atom adsorption on the V-doped ZrCo(110). Table S9 The adsorption energy (E_{ads}) of H atom adsorption on the Pt-doped ZrCo(110). Table S9 The adsorption energy (E_{ads}) of H atom adsorption on the Rh-doped ZrCo(110).

Fig. S1 Crystal structure of ZrCo alloys

Fig. S2 a) initial state, b) transition state, c) transition state+4 d) final state Points, calculated states from H_2 dissociation on the pure surface.

Fig. S3 a) initial state, b) transition state, c) transition state+3 d) final state Points, calculated states from $\rm H_2$ dissociation on the doped surfaces.

Layer (from	ZrCo(110) surface			Ti-ZrCo(110) surface		
top layer)	Before	After	Δ	Before	After	Δ
	relaxation	relaxation		relaxation	relaxation	
1 st (Co)	11.245	10.984	-0.261	11.245	10.990	-0.255
$1^{st}(Zr)$	11.245	11.295	0.050	11.245	11.296	0.051
1 st (Ti)	-	-	-	11.245	11.077	-0.168
$2^{nd}(Zr)$	8.996	9.002	0.006	8.996	9.013	0.017
2 nd (Co)	8.996	9.153	0.157	8.996	9.179	0.183
3 rd (Co)	6.747	6.680	-0.067	6.747	6.673	-0.074
3 rd (Zr)	6.747	6.755	0.008	6.747	6.766	0.019
d ₁₂ (Co-Zr)	2.249	1.982	-13.50%	2.249	1.977	-13.77%
d ₁₂ (Zr-Co)	2.249	2.142	-5.00%	2.249	2.117	-6.25%
d ₁₂ (Ti-Zr)	-	-	-	2.249	2.064	-8.97%
d ₁₂ (Ti-Co)	-	-	-	2.249	1.898	-18.49%
d ₂₃ (Zr-Co)	2.249	2.322	3.14%	2.249	2.340	3.90%
d ₂₃ (Co-Zr)	2.249	2.398	6.21%	2.249	2.413	6.81%

Table S1 The direct coordinates of ZrCo(110) and Ti-ZrCo(110) surface atoms in the z direction. d_{12} and d_{23} are the change in layer spacing between the first and second layers and between the second and third layers, respectively

Table S2 Adsorption energy(E_{ads}) and the distance of H from the surface after H atom adsorption on ZrCo(110).

Adsorption site	$E_{ads}/H(eV)$	the distance of H from the surface(Å)
B1	-3.869	1.272
B2	-3.750	1.405
H1	-4.083	0.959
T1	-3.703	1.602
T2	-3.012	2.096

Table S3 Adsorption energy (E_{ads}) and the distance of H_2 from the surface after H_2 adsorption on ZrCo(110).

Adsorption		E_{ads}/H (eV)	the distance of H_2 from the
site			surface (Å)
B1	-a	0.285	2.000
	-b	0.0004	4.080
	-c	-0.018	3.098
B2	-a	-1.496	-

	-b	-0.007	3.861
	-c	-0.014	2.822
H1	-a	-0.006	3.885
	-b	-1.497	-
T1	-a	-1.412	-
	-b	-0.003	3.945
	-c	-0.022	3.586
T2	-a	-0.214	2.312
	-b	-0.246	2.272
	-c	-0.006	3.084

*Table S4 The adsorption	energy	(E _{ads})	of H	atom	adso	rption on	the Fe-doped ZrCo(110).
						()	

Adsorption site	E _{ads} (eV)
B4(CoFe)	-3.926
H1(ZrZrFe)	-4.246
T2(Zr)	-2.981

*'B' refers to 'bridge site', 'H' refers to 'hollow site', 'T refers to 'top site', and the atoms that make up the corresponding highly symmetric site are enclosed in parentheses, the same below.

Table S5 The adsorption energy (E_{ads}) of H atom adsorption on the Sc-doped ZrCo(110).

- 1	85 (aus)	1	1 ()
	Adsorption site	Eads	-
	B1(ZrSc)	-3.684	
	B3(CoCo)	-3.874	
	H1(ZrCoSc)	-4.113	
	H2(CoCoSc)	-4.114	
	T3(Sc)	-2.676	
Table S6 The adsorption	energy (E _{ads}) of H ato	om adsorption on	the Ni-doped ZrCo(110).
	Adsorption site	Eads	
	B2(ZrZr)	-3.829	
	B4(CoNi)	-3.810	
	H1(ZrZrNi)	-3.952	
Table S7 The adsorption	energy (E _{ads}) of H ato	om adsorption on	the Cu-doped ZrCo(110).
	Adsorption site	E _{ads}	-
	B4(CoCu)	-3.719	
	H1(ZrZrCu)	-4.015	
	T1(Co)	-3.646	
	T2(Zr)	-3.067	
	T3(Cu)	-3.284	_
Table S8 The adsorption	energy (E_{ads}) of H at	om adsorption or	the V-doped ZrCo(110).
	Adsorption site	Eads	-
	B4(CoV)	-4.062	
	H1(ZrZrV)	-4.466	

	H2(ZrCoV)	-4.463	_
	T1(Co)	-3.663	
	T3(V)	-3.705	
Table S9 The adsorption	energy (E _{ads}) of H atom	m adsorption o	n the Pt-doped ZrCo(110).
	Adsorption site	Eads	_
	B2(ZrZr)	-3.651	
	B4(CoPt)	-3.568	
	H1(ZrZrPt)	-3.676	
	T3(Pt)	-3.347	
Table S10 The adsorption	energy (E_{ads}) of H ato	m adsorption c	n the Rh-doped ZrCo(110).
	Adsorption site	Eads	-
	B2(ZrZr)	-3.643	
	B4(CoRh)	-3.776	
	H1(ZrZrRh)	-3.938	
	T1(Co)	-3.683	
	T3(Rh)	-3.494	