ESI for a manuscript:

Anti-parallel Dimer and Tetramer Formation of Cyclic and Open Structure Tertiary Amides, *N*-methyl-2-pyrrolidone and *N*,*N*-dimethylacetamide, in Solution of a Non-polar Solvent, Benzene

Ayana Tagawa and Toshiyuki Shikata^{*}

Division of Natural Resources and Eco-Materials, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan

*To whom correspondence should be addressed. E-mail: shikata@cc.tuat.ac.jp

¹H-NMR Spectra: Figure ESI-1 shows typical ¹H-NMR spectra (signal intensities, $I_{\rm NMR}$, vs chemical shift, δ) at several concentrations, *c*, for a NMP/(d)Bz system. The spectrum data for (5)CH₂ and (4)CH₂ protons demonstrated remarkable chemical shift changes more than 0.5 ppm with increasing the concentration, *c*. However, chemical shift changes observed in (N)CH₃ and (3)CH₂ protons were not so profound, but less than 0.1 ppm. Although the dependencies of chemical shift data for (5)CH₂ and (N)CH₃ protons on the *c* value were fully discussed in the main manuscript using the evaluated two equilibrium constants, $K_d^{\rm NMR} = 1.2 \, {\rm M}^{-1}$ and $K_t^{\rm NMR} = 0.2 \, {\rm M}^{-1}$, that for (3)CH₂ and (4)CH₂ protons were not included.

Figure ESI-1. ¹H-NMR spectra for the NMP/(d)Bz system at several concentrations from 0.02 to 9.3 M. Assignment for each proton is presented in the figure.

The concentration, *c*, dependencies of chemical shift data, δ , for (4)CH₂ and (3)CH₂ protons are shown in Figure ESI-2. A solid blue line represents calculated δ value based on the three-state model using the $K_d^{\text{NMR}} = 1.2 \text{ M}^{-1}$ and $K_t^{\text{NMR}} = 0.2 \text{ M}^{-1}$ evaluated in the main manuscript assuming chemical shifts for (4)CH₂ protons at the monomer, dimer and tetramer state, $\delta_m = 1.09$, $\delta_d = 1.23$ and $\delta_t = 2.25 \text{ ppm}$, respectively. On the other hand, a solid red line represents calculated δ using the same K_d^{NMR} and K_t^{NMR} assuming chemical shifts for (3)CH₂ protons for each state, $\delta_m = 1.86$, $\delta_d = 1.917$ and $\delta_t = 1.847 \text{ ppm}$, respectively. Perfect agreement between δ data and calculated lines for both the protons seen in Figure ESI-2 reveals that the equilibrium constants evaluated in the main manuscript are not far from the real values.

Figure ESI-2. The dependencies of chemical shifts, δ , for (4)CH₂ and (3)CH₂ protons for the NMP/(d)Bz system. Solid blue and red lines represent the calculated δ values using the equilibrium constants, $K_d^{\text{NMR}} = 1.2 \text{ M}^{-1}$ and $K_t^{\text{NMR}} = 0.2 \text{ M}^{-1}$, based on the three-state model (see the main manuscript).

Figure ESI-3 shows typical ¹H-NMR spectra at several *c* for a DMAc/(d)Bz system. The spectrum data for $(N_{\beta})CH_3$ protons demonstrated a profound chemical shift change more than 0.6 ppm with increasing the concentration, *c*. (C)CH₃ protons demonstrate a moderate chemical shit change of ca 0.1 ppm, and $(N_{\alpha})CH_3$ protons only a small chemical shit charge less than 0.1 ppm as observed in Figure ESI-3. Although the dependencies of chemical shift data for $(N_{\beta})CH_3$ and $(N_{\alpha})CH_3$ protons on the *c* value were discussed in the main manuscript using the evaluated two equilibrium constants, $K_d^{NMR} = 0.35$ M⁻¹ and $K_t^{NMR} = 0.25$ M⁻¹, that for (C)CH₃ protons was not included.

Figure ESI-3. 1 H-NMR spectra for the DMAc/(d)Bz system at several concentrations from 0.04 to 9.7 M. Assignment for each proton is presented in the figure.

The *c* dependence of the δ value for (C)CH₃ protons is shown in Figure ESI-4. A solid blue line represents calculated δ value based on the three-state model using the same $K_d^{NMR} = 0.35 \text{ M}^{-1}$ and $K_t^{NMR} = 0.25 \text{ M}^{-1}$ values assuming chemical shifts for (C)CH₂ protons at the monomer, dimer and tetramer state, $\delta_m = 1.58$, $\delta_d = 1.72$ and $\delta_t = 1.76$ ppm, respectively. The calculated line agrees well with δ data for the (C)CH₃ protons as seen in Figure ESI-4. This agreement strongly proposes that the equilibrium constants evaluated in the main manuscript are close to the real values.

Figure ESI-4. The dependencies of chemical shifts, δ , for (C)CH₃ protons for the DMAc/(d)Bz system. Solid blue line represents the calculated δ values using the equilibrium constants, $K_d^{\text{NMR}} = 0.35 \text{ M}^{-1}$ and $K_t^{\text{NMR}} = 0.25 \text{ M}^{-1}$, based on the three-state model (see the main manuscript).