Supporting Information

Electronic Structure and High-Temperature Thermochemistry

of BaZrO_{3-δ} Perovskite from First-Principles Calculations

Krishna K. Ghose,¹ Alicia Bayon,² Jim Hinkley,^{2,3} Alister J. Page¹*

¹Priority Research Centre for Frontier Energy Technologies and Utilisation, The University of Newcastle, Callaghan 2308, Australia

²CSIRO Energy Technology, Newcastle 2304, Australia

³School of Engineering and Computer Science, Victoria University of Wellington, Kelburn 6012, New Zealand

*Corresponding Author. Email: alister.page@newcastle.edu.au

Figure S1. Variation with temperature (0 - 2,000 K) of the calculated BZO properties from quasi-harmonic approximation: (a) thermal expansion (α/K^{-1}) , (b) bulk modulus (B/GPa), and (c) volume (V/Å).

Figure S2. PBE-PAW ΔG_{RR} (equation (11)) at standard state pressure $p^{\circ} = 1$ atm for BZO_{3- δ} as a function of oxygen non-stoichiometry δ between 0 – 2,000 K, with oxygen partial pressure: (a) $P_{O_2} = 10^{-5}$ atm, (b) $P_{O_2} = 10^{-10}$ atm, (c) $P_{O_2} = 10^{-15}$ atm, and (d) $P_{O_2} = 10^{-20}$ atm. The reduction temperature of BZO_{3- δ} decreases with lower oxygen partial pressure.

Figure S3. (a) Vibrational entropy difference (ΔS), and (b) constant-pressure heat capacity difference (ΔC_p) in defect BZO_{3- δ} between 0 – 2,000 K. The entropy and heat capacity differences become smaller with increased oxygen vacancy concentration, and hence give higher contributions to the highly-defected-BZO_{3- δ}.

Figure S4. PBE phonon dispersion curves (left), and corresponding atomic vibrational densities of states (right) for representative structures of (a) BZO, (b) BZO_{2.875}, (c) BZO_{2.75}, (d) BZO_{2.625}, and (e) BZO_{2.5}.