Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplementary Information for

A novel model for pyro-electro-catalytic hydrogen production in pure water

Julian Schlechtweg,^{ab} Sascha Raufeisen,^{ab} Michael Stelter,^{abc} and Patrick Braeutigam^{ab*}

^a Center for Energy and Environmental Chemistry, Friedrich-Schiller-Universität Jena, Philosophenweg 7a, 07743 Jena, Germany.

^b Institue for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 12, 07743 Jena, Germany.

^c Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Michael-Faraday-Str. 1, 07629 Hermsdorf, Germany.

E-mail: patrick.braeutigam@uni-jena.de

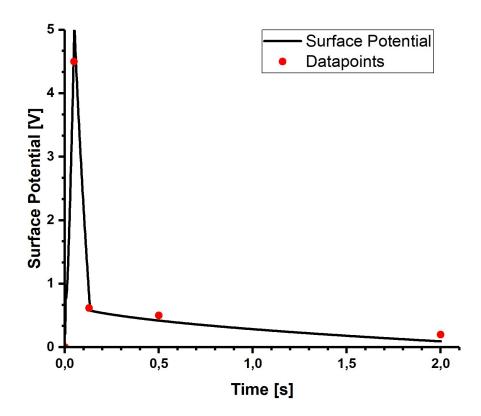


Figure S1: Correlation between the pyro-electro-catalytic model and the measurements of Starr *et al.* The data points were read out from a fig, 3a in Starr et al.¹

Fig. S1 shows the determination of the kinetic parameters for the different regimes. Varying the parameters in a reasonable range and applying to the model, led to a good congruence of calculation and experimental data. The kinetic parameters were as follows:

Kinetic Parameter	This work (protons, organics,	Starr et al. ² (every species)
	silicates, salt ions)	
f _{cap}	(0.015, 0.015, 0.015, 0.015)	0.07
f _{sel}	(1, 0.015, 0.015, 0.015)	-
f _{non}	(1, 1, 1, 1)	0.715

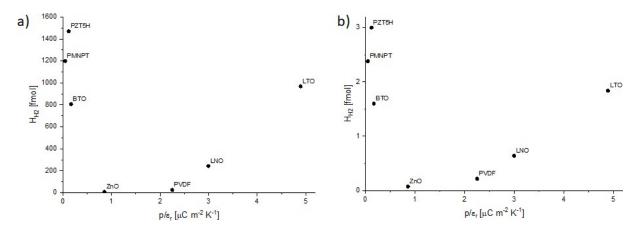


Figure S2: Hydrogen production for different materials and one excitation event. (a) Temperature gradient is 1 K/s and temperature difference is 20 s. (b) Temperature difference is 2 K and temperature gradient is 0.1 K/s.

References

- 1. M. B. Starr, J. Shi and X. Wang, Angew. Chem., 2012, **124**, 6064-6068.
- 2. M. B. Starr and X. D. Wang, Scientific Reports, 2013, 3, 8.