Supplementary Information

Room Temperature Ferromagnetism Properties of In₂S₃ Nanoparticles Regulated by

Doping with Gd ions

Yi Liu, Hongpeng Zhang, Qi Zhao, Qing Lu, Mingming Zhu and Mingzhe Zhang*.

State Key Laboratory of Superhard Materials, College of Physics, Jilin University,

Changchun 130012, People's Republic of China.

*E-mail address: zhangmz@jlu.edu.cn

Sample	β _{hkl} (FWHM)	D (nm)
pristine In ₂ S ₃	2.78	3.27
Gd doped In_2S_3 (0.39 at.%)	3.01	3.02
Gd doped In_2S_3 (1.20 at.%)	2.37	3.83
Gd doped In_2S_3 (1.68 at.%)	2.34	3.89
Gd doped In_2S_3 (2.17 at.%)	1.98	4.58

Table S1. Various particle sizes of pristine In_2S_3 and In_2S_3 : Gd^{3+} samples.

Figure S1. EDS pattern of the In_2S_3 : Gd³⁺ (1.20 at.%) nanoparticles.

Figure S2. IR spectrum of the In_2S_3 : Gd^{3+} (1.20 at.%) nanoparticles.

The IR spectrum of the In_2S_3 : Gd^{3+} (1.20 at.%) nanoparticles is shown in Figure. S2, which is consistent with the reported results.^{1, 2} The peaks at 494 cm⁻¹ and 643 cm⁻¹ may be caused by the mercaptoethanol absorbed on the surface of the In_2S_3 : Gd^{3+}

nanoparticles.³ The peak at 1013 cm⁻¹ is ascribed to the C-O stretching vibration. The peak at 1603 cm⁻¹ can be attributed to CO₂ absorbed on the surface of the In₂S₃: Gd³⁺ nanoparticles. The peak centered at 3112 cm⁻¹ corresponding to O-H stretching vibration which may be due to absorbed water molecules in the sample. The peak at 3755 cm⁻¹ is associated with the interaction of In³⁺, S²⁻ and Gd³⁺. The results of IR spectrum further indicate that the dangling bonds on the surface can bond with some ions like (O-H)⁻, H⁺ and (HOCH₂CH₂S)⁻, and these non-magnetic ions had no effect on the magnetism of the sample.

Figure S3. Temperature-dependent magnetization curves for the In_2S_3 : Gd³⁺ (1.20 at.%) nanoparticles in ZFC and FC modes at a magnetic field of 500 Oe. The inset shows the high-magnification of the curves between 240 and 300 K.

Figure. S3 shows temperature-dependent magnetization curves for the In_2S_3 : Gd³⁺ (1.20 at.%) nanoparticles in zero-field cooling (ZFC) and field cooling (FC) modes at a magnetic field of 500 Oe. Note that the ZFC-FC curves measured in the temperature range of 2-300K do not exhibit magnetic transition. The sharp increase of magnetization both in the ZFC-FC curves below 30 K and the presence of hysteresis at higher temperatures can be considered as ferromagnetic behavior. The small disparity between ZFC and FC curves indicates the existence of antiferromagnetic.⁴

Figure S4. one In vacancy in a Gd doped In_2S_3 system ($In_{30}GdS_{48}$).

Figure S5. Spin-polarized total and partial DOS of one dopant Gd plus one vacancy defect ($In_{30}GdS_{48}$).

Figure S6. Spatial distribution of the spin density for (a) $In_{31}S_{48}$ (V_{In}), (b) $In_{31}Gd_1S_{48}$ (Gd_{In}) system, (c) $In_{31}Gd_1S_{48}$ ($Gd_{In}+V_{In}$) system. The black circle is the site of the removable In atom, the purple solid ball is the site of substituted Gd atom.

Table S2. The defect formation energies of $In_{31}S_{48}$ and $In_{30}GdS_{48}$ system under In-rich and S-rich conditions.

E_{f}	In-rich	S-rich
$In_{31}S_{48}$	4.992 eV	2.514 eV
$In_{30}GdS_{48}$	0.752 eV	-4.204 eV

References

- 1. S. H. Yu, L. Shu, Y. S. Wu and J. Yang, J. Am. Ceram. Soc., 1999, 82, 457-460.
- 2. B. Vigneashwari, A. K. Tyagi, S. Dash, P. Shankar, I. Manna and S. A. Suthanthiraraj, *J. Nanosci. Nanotec*, 2009, **9**, 5183-5187.
- 3. M. Salavati-Niasari, M. R. Loghman-Estarki and F. Davar, *Chem. Eng. J.*, 2008, **145**, 346-350.
- 4. R. N. Aljawfi and S. Mollah, J. Magn. Magn. Mater., 2011, 323, 3126-3132.