Supporting Information

1. Quasi-Harmonic approximation

A feature of a highly hydrogen bonded system is the existence of low-frequency vibrations with frequencies as low $5-10 \mathrm{~cm}^{-1}$. These vibrations are poorly described by the harmonic approximation and the paper also considers the importance of describing these vibrations. A quasi-harmonic approach introduced by Grimme ${ }^{69}$ will be used to look at the Rayleigh scattering. The uncertainty within the harmonic approximation originates from the vibrational entropy contribution given as:

$$
\begin{equation*}
S_{V}=R\left[\frac{h \omega}{k_{B} T\left(e^{\frac{h \omega}{k_{B} T}}-1\right)}-\ln \left(1-e^{-\frac{h \omega}{k_{B} T}}\right)\right] \tag{S1}
\end{equation*}
$$

where R is the gas constant, h is the Planck constant, ω is the frequency, k_{B} is the Boltzmann constant and T is the temperature. The last term in equation S 1 asymptotically goes towards minus infinity as the frequencies goes to zero, which creates inaccuracies.

To avoid this behavior the quasi-harmonic approach treats all low-frequency vibrations as rotations instead ${ }^{69}$. These low-frequency vibrations are often not a classical vibrational motion but rather a unison pivotal motion of the atoms. Instead of using the vibrational entropy for low-frequency vibrations the entropy contribution will be calculated as follows:

$$
\begin{equation*}
S_{R}=R\left\{\frac{1}{2}+\ln \left[\left(\frac{8 \pi^{3} \mu^{\prime} k T}{h^{2}}\right)^{\frac{1}{2}}\right]\right\} \tag{S2}
\end{equation*}
$$

where μ^{\prime} is the effective moment of inertia, which is calculated from the moment of inertia for a free rotor, μ, and is restricted to a reasonable value by introducing an average molecular moment of inertia, B_{av}, as a limiting value for very small frequencies. A limiting value of B_{av} is set to $10^{-44} \mathrm{~kg} \mathrm{~m}^{2}$ for very small frequencies.

$$
\begin{equation*}
\mu^{\prime}=\frac{\mu B_{a v}}{\mu+B_{a v}} \tag{S3}
\end{equation*}
$$

To be able to interpolate between the harmonic and the quasi-harmonic approximation throughout the frequencies a weighting function (eq. S4) is used to combine S_{R} and S_{V}. The weighting function. $\mathrm{W}(\omega)$ is calculated by introducing a Head-Gordon damping function ${ }^{63}$. where $\alpha=4$. This damping function is shown in equation S 5 .

$$
\begin{array}{r}
S=w(\omega) S_{V}+[1-w(\omega)] S_{R} \\
w(\omega)=\frac{1}{1+\left(\omega_{0} / \omega\right)^{\alpha}} \tag{S5}
\end{array}
$$

2. Rayleigh scattering

Plots containing non-normalized Rayleigh scattering both in the harmonic and quasiharmonic approximation and normalized Rayleigh scattering were shown in the main article. The following tables will show the values of the normalized and non-normalized Rayleigh scattering in both the harmonic and quasi-harmonic approximation. Furthermore, the tables will show the normalization factor (Sum of Boltzmann factors) that is used to normalized the non-normalized Rayleigh scattering.

Table S2.1: $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{\mathbf{2}} \mathbf{O}\right)$

$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{1}$ - Harmonic	PM6	PM7	$\begin{aligned} & \omega \text { B97X-D/ } \\ & 6-31 G \end{aligned}$	$\begin{aligned} & \text { } \omega \text { B97X-D/ } \\ & \text { 6-31++G(d,p) } \\ & \text { (PLUS) } \end{aligned}$
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	59,398	35,953	27,457	37,302
Normalization factor	2.13	1.30	1.00	2.18
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	27,839	27,586	27,456	27,577
Percentage of PLUS	100.95	100.03	99.56	100
($\mathrm{H}_{2} \mathrm{O}_{2}$)($\left.\mathrm{H}_{2} \mathbf{O}\right)_{1}$-Quasi-harmonic				
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	56,725	30,050	27,457	56,402
Sum of Boltzmann factors	2.06	1.09	1.00	2.05
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	27529	27489	27456	27530
Percentage of Normalized PLUS Rayleigh scattering	100.00	99.85	99.73	100

Table S2.2: $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ - Harmonic	PM6	PM7	$\begin{aligned} & \omega \text { B97X-D/ } \\ & 6-31 G \end{aligned}$	$\begin{aligned} & \text { 由B97X-D/ } \\ & \text { 6-31++G(d,p) } \\ & \text { (PLUS) } \end{aligned}$
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	115,900	67,336	73,016	107,219
Sum of Boltzmann factors	2.14	1.25	1.35	1.98
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	54204	54024	54123	54212
Percentage of PLUS	99.99	99.65	99.84	100

$\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{)}\left(\mathbf{H}_{\mathbf{2}} \mathbf{0} \mathbf{)}_{\mathbf{2}}\right.\right.$ - Quasi-harmonic				
Non-normalized Rayleigh scattering $\left(\mathrm{A}_{0}{ }^{3}\right)$	106,723	63,858	69,838	101,068
Sum of Boltzmann factors	1.97	1.18	54107	1.86
Normalized Rayleigh scattering $\left(\mathrm{A}_{0}{ }^{3}\right)$	54187	54044	54198	
Percentage of Normalized PLUS Rayleigh scattering	99.98	99.72	100	

Table S2.3: $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$

$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ - Harmonic	PM6	PM7	$\begin{aligned} & \hline \omega \text { B97X-D/ } \\ & 6-31 G \end{aligned}$	$\begin{aligned} & \omega \text { } 197 \mathrm{X}-\mathrm{D} / \\ & \text { 6-31++G(d,p) } \\ & \text { (PLUS) } \end{aligned}$
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	181,220	144,531	184,297	212,102
Sum of Boltzmann factors	2.01	2.22	2.06	2.95
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	90085	90012	89575	90273
Percentage of PLUS	99.79	99.71	99.23	100
$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ - Quasi-harmonic				
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	176,575	179,884	197,518	300,130
Sum of Boltzmann factors	1.96	2.00	2.20	3.32
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	90069	89996	89653	90371
Percentage of PLUS	99.67	99.58	99.21	100

Table S2.4: $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$

$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ - Harmonic	PM6	PM7	$\begin{aligned} & \hline \omega B 97 X-D / \\ & 6-31 G \end{aligned}$	$\begin{aligned} & \omega \text { B97X-D/ } \\ & 6-31++G(d, p) \\ & \text { (PLUS) } \end{aligned}$
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	376,733	419,294	353,172	538,758
Sum of Boltzmann factors	2.79	3.10	2.63	4.01
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	135011	135083	134377	134504
Percentage of PLUS	100.38	100.43	99.91	100
$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}-$ Quasi-harmonic				
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	509,565	487.374	396,220	569,024
Sum of Boltzmann factors	3.79	3.61	2.97	4.25
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	134545	134936	133608	133998
Percentage of PLUS	100.41	100.70	99.71	100

Table S2.5: $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$

$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ - Harmonic	PM6	PM7	$\begin{aligned} & \hline \omega B 97 X-D / \\ & 6-31 G \end{aligned}$	$\begin{aligned} & \text { 由B97X-D/ } \\ & \text { 6-31++G(d,p) } \\ & \text { (PLUS) } \end{aligned}$
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	699,511	1,788,745	1,909,433	1,310,511
Normalization factor	3.76	9.52	10.29	7.03
Normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	186067	187776	185573	186524
Percentage of PLUS	99.76	99.49	100.67	100
$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \text { - }$ Quasi-harmonic				
Non-normalized Rayleigh scattering ($\mathrm{A}_{0}{ }^{3}$)	1,815,811	1,418,151	1,439,901	1,750,516

Sum of Boltzmann factors	9.84	7.67	7.79	9.54
Normalized Rayleigh scattering $\left(\mathrm{A}_{0}{ }^{3}\right)$	184503	184993	184955	183462
Percentage of PLUS	100.57	100.83	100.81	100

3: Isotropic and anisotropic polarizabilities

Table S3.1: Isotropic and anisotropic polarizabilities and pure molecular Rayleigh scattering for all 48 conformers in the PLUS-pathway for $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$. Sorted by Gibbs free energy with conformer 1 being the lowest Gibbs free energy conformer.

Conformer	Isotropic polarizability $\left(\mathrm{a}_{0}\right)$	Anisotropic polarizability $\left(\mathrm{a}_{0}\right)$	Molecular Rayleigh $\left(\mathrm{A}_{0}\right)^{\prime}$
1	64.48	9.36	188234.1
2	64.28	10.35	187328.9
3	63.83	7.22	184019.8
4	64.54	14.14	190042.7
5	64.71	12.61	190499.4
6	64.78	14.85	191707.0
7	64.38	14.05	189081.5
8	64.64	14.31	190686.9
9	64.5	7.97	188037.0
10	63.85	6.57	184018.2
11	63.85	6.85	184067.0
12	64.67	7.53	188936.5
13	63.48	6.24	181843.2
14	64.07	11.6	186472.7
15	63.95	3.63	184203.4
16	64.77	14.56	191537.8
17	63.92	4.25	184094.3
18	64.22	10.07	186907.6
19	64.28	8.55	186886.7
20	64.65	10.01	189385.6
21	64.06	9.85	185927.1
22	63.58	8.72	182897.2
23	64.01	5.62	184788.2
24	63.31	6.33	180887.9
25	62.89	7.4	178693.7
26	63.39	3.46	180978.8
27	64.06	12.23	186610.2
28	63.89	6.4	184219.4
29	63.91	4.67	184085.5
30	64	9.9	185594.1
31	63.85	5	183782.0
32	64.1	14.07	187470.0
13			

33	62.9	7.72	178813.2
34	64.19	14.58	188179.5
35	64.18	13.39	187689.1
36	63.94	5.42	184356.5
37	63.09	6.2	179615.4
38	64.45	10.48	188348.9
39	63.84	7.2	184073.5
40	63.86	7.38	184222.5
41	64.17	8.24	186183.2
42	64.33	10.61	187689.1
43	64.28	13.23	188211.8
44	63.39	7.19	181495.2
45	63.21	5.38	180174.0
46	63.54	6.52	182232.6
47	64.06	8.54	185613.9
48	64.01	5.07	184711.8

In table S3.1 it is clear that the isotropic polarizabilities changes
very little across all 48 conformers within the PLUS pathway for $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$. The anisotropic polarizability though changes significantly depending on the conformer. We see values ranging from $3.46 \mathrm{a}_{0}$ to $14.61 \mathrm{a}_{0}$. In percentage of the isotropic contribution this ranges all the way from 5% to 23%. The tendency of very small differences in the isotropic polarizability is consistent for all $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{1-5}$. The anisotropic polarizability varies more than the isotropic for all $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ although it is more significant for the bigger clusters $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4,5}$.

