Supporting Information

DFT study on the effect of oxygen vacancy and H₂O in Mn-MOF-74 on SCR reaction

Minhua Zhang^{a,b}, Kun Gu^{a,b}, Xuewei Huang^{a,b} and Yifei Chen^{a,b,*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, R&D
Center for Petrochemical Technology, Tianjin University, Tianjin 300072, P R China
^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

This file includes:

Tables S1 to S4 The effect of H_2O on oxygen vacancy

	Mulliken charge (e)				
Atomic species	Framework of	NH	NO	0.	NOa
	Mn-MOF-74	1113	110	02	1102
Mn	0.497	0.580	0.512	0.615	0.540
O*	-0.539	-0.549	-0.551	-0.552	-0.559
Ν	-	-0.434	0.024	-	0.302
0	-	-	-0.162	-	-
01	-	-	-	-0.158	-0.285
O2	-	-	-	-0.127	-0.288
Net charge	-	0.144	-0.138	-0.285	-0.271

Table S1 Charge transfer of four concerned molecules after adsorption on carboxyl oxygen vacancy.

Notes : O^* is hydroxyl oxygen, O is O atom of NO; O1 and O2 represent the oxygen atoms in the O_2 and NO_2 , respectively.

	Mulliken charge (e)				
Atomic species	Framework of	NH ₃	NO	O ₂	NO
Atomic species	Mn-MOF-74				1102
Mn	0.473	0.657	0.584	0.684	0.621
O*	-0.551	-0.465	-0.454	-0.449	-0.491
Ν	-	-0.433	0.021	-	0.293
О	-	-	-0.171	-	-
01	-	-	-	-0.157	-0.291
02	-	-	-	-0.133	-0.286
Net charge	-	0.129	-0.150	-0.290	-0.284

Table S2 Charge transfer situation of four concerned molecules after adsorption on hydroxyl oxygen vacancy.

	Bond length /Å			
Varianna	Framework of	Framework of Adsorption of two H ₂ O		
Key name	Mn-MOF-74	molecules	molecules	
Mn-O1*	2.019	2.166	2.117	
Mn-O2*	1.956	2.045	2.078	

Table S3 Changes of Mn-O bond lengths before and after $\rm H_2O$ adsorption.

Mn-MOF-74	Defense de mético	Adsorption of two H ₂ O	Adsorption of six H ₂ O	
Lattice parameter	Before adsorption	molecules	molecules	
a (Å)	15.1065	15.3229	15.3410	
<i>b</i> (Å)	15.1065	15.0376	15.3231	
<i>c</i> (Å)	15.1065	15.6279	15.4401	
a (degree)	117.8214	117.9977	118.0588	
b (degree)	117.8214	119.8679	118.1399	
γ (degree)	117.8214	115.4766	117.1774	

Table S4 Lattice parameter changes of Mn-MOF-74 (hexagonal) before and after $\rm H_2O$ adsorption.

The effect of H₂O on oxygen vacancy

The adsorption of H_2O on metal sites containing oxygen vacancies were calculated. Table S5 lists the changes of Mn-O bond lengths before and after H_2O adsorbed in MOF-74- $O_{Vearboxyl}$ and MOF-74- $O_{Vhydroxyl}$. Different from the bond length stretching after H_2O adsorption in perfect crystals, in the oxygen vacancies containing structure, only the Mn-O4* bond was elongated and the other bonds were shorten. It indicates that the metal sites moves closer to oxygen vacancies after the adsorption of H_2O . The movement of metal sites is shown in the Fig.S1. The effect of H_2O on two kinds of oxygen vacancy are almost the same.

	Bond length /Å				
Bond name	Carboxyl ox	ygen vacancy	Hydroxyl oxygen vacancy		
	Before adsorption	After adsorption	Before adsorption	After adsorption	
Mn-O1*	2.064	1.930	2.030	1.968	
Mn-O2*	1.934	2.048	2.034	1.975	
Mn-O3*	2.156	2.095	2.060	2.032	
Mn-O4*	2.195	2.284	2.114	2.304	

Table S5 changes of Mn-O bond lengths before and after H2O adsorption.

Fig.S1 Change of the position of Mn metal site (a) carboxyl oxygen vacancy (b) hydroxyl oxygen vacancy.

