Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplementary Information:

Theoretical investigation on the reaction mechanism and kinetics of Criegee intermediate with ethylene and acetylene

Cuihong Sun,*a Baoen Xu, a Liqiang Lv, a and Shaowen Zhang*b

^a College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, P. R. China

^b School of Chemistry and Chemical Engineering, Key Laboratory of Cluster Science of Ministry

of Education, Beijing Institute of Technology, South Zhongguancun Street #5, Haidian District,

Beijing, 100081, P. R. China

Cartesian coordinates of all the optimized geometries on M06-2X/AUG-cc-pVTZ level.

 $C_2H_4 + CH_2OO$ reaction

•
)

0	-0.007248	-0.459800	0.000006
С	-1.053886	0.203122	-0.000016
Н	-0.984282	1.285139	0.000040
Н	-1.972841	-0.366750	0.000021
0	1.167303	0.192660	-0.000002
C_2H_4			
С	-0.660958	-0.000009	0.000004
С	0.660957	-0.000022	-0.000006
Н	-1.227831	0.921836	0.000010
Н	-1.227651	-0.922007	-0.000022
Н	1.227977	-0.921717	0.000028
Н	1.227509	0.922073	-0.000005
Com	4		
С	-1.580174	-0.762131	0.013288
С	-1.972579	0.500517	-0.086698
Н	-1.520667	-1.267785	0.967633
Н	-1.287120	-1.340391	-0.851766
Н	-2.038159	0.999110	-1.045801
Н	-2.270858	1.073133	0.783348
0	1.369571	0.141511	-0.401674
С	0.952236	1.105853	0.255734
Η	0.576385	0.935386	1.256477
Н	1.024473	2.072087	-0.225933

0	1.270310	-1.083633	0.154437	
ComInsW				
С	-0.888281	1.002182	0.512650	
Η	-0.710228	0.558389	1.485152	
Η	-0.704930	2.038621	0.261660	
0	-1.344617	0.295573	-0.394612	
0	-1.558848	-1.015897	-0.127259	
С	1.666202	-0.646661	0.380096	
С	2.078806	0.292486	-0.458745	
Η	0.772933	-1.232238	0.183863	
Η	2.212969	-0.861704	1.290015	
Η	1.540745	0.501625	-1.375592	
Н	2.975864	0.869859	-0.274142	
ComI	nsO			
С	-1.078238	1.040028	0.383373	
Н	-0.729220	0.784086	1.376506	
Н	-1.191008	2.046639	0.003285	
0	-1.385797	0.130774	-0.397702	
0	-1.235463	-1.145650	0.021758	
Н	1.126048	-0.254831	-1.382830	
С	1.834757	0.149195	-0.669719	
С	1.835813	-0.264624	0.588038	
Η	2.544032	0.121753	1.310595	
Η	1.123026	-1.010340	0.920708	
Η	2.543212	0.884114	-1.030871	
IMA				
С	-1.176484	0.266719	-0.126194	
С	0.000155	1.244044	-0.000079	
Η	-2.008910	0.485116	0.538546	
Η	-1.527987	0.194264	-1.156734	
Η	0.082558	1.877058	-0.879851	
Η	-0.082071	1.877462	0.879420	
0	0.651648	-0.986009	-0.288708	
С	1.176507	0.266455	0.126360	
Н	1.527594	0.193764	1.157030	
Η	2.009261	0.484744	-0.538009	
0	-0.651837	-0.985955	0.288592	
IMRO				
С	-1.142736	0.109605	-0.518221	
С	1.142734	0.109619	0.518201	
Н	0.744185	-0.623444	1.244190	
Н	1.896759	0.685235	1.069777	
0	1.734925	-0.656491	-0.447780	
0	-1.734926	-0.656483	0.447794	

Н	-1.896735	0.685208	-1.069832		
С	-0.000004	0.972144	0.000000		
Η	-0.365588	1.616026	0.801614		
Η	0.365552	1.616055	-0.801605		
Η	-0.744124	-0.623503	-1.244128		
IMIsc)				
С	1.107457	0.354880	0.415732		
С	-1.338932	0.211413	-0.139395		
Η	0.770600	-1.414890	-0.269126		
Η	-2.268571	0.684537	-0.504792		
0	-1.353009	-0.933646	0.231613		
0	1.468900	-0.759911	-0.368456		
Η	1.964207	1.026619	0.419444		
С	-0.108332	1.071711	-0.147722		
Η	0.070325	1.380763	-1.182578		
Η	-0.333198	1.985862	0.410458		
Η	0.908353	0.057542	1.449653		
TSA					
С	-1.391313	-0.740546	0.010281		
С	-1.516643	0.595071	-0.109050		
Η	-1.494365	-1.234627	0.965515		
Н	-1.275099	-1.380290	-0.850744		
Н	-1.548104	1.067105	-1.082013		
Н	-1.801813	1.206598	0.737655		
0	1.228265	0.092590	-0.392009		
С	0.759341	1.063988	0.258475		
Н	0.532264	0.927363	1.305844		
Н	0.890559	2.035092	-0.200855		
0	0.970266	-1.109130	0.162804		
TSD3					
С	1.146236	0.097212	0.324885		
С	0.286849	1.167513	-0.270438		
Н	1.891809	0.759128	-0.294050		
Н	1.359812	0.228173	1.393214		
Н	0.355431	2.171911	0.140951		
Н	0.213330	1.109869	-1.351189		
0	-1.148270	-0.878862	-0.094488		
С	-1.302950	0.330425	0.199263		
Η	-1.841827	0.978122	-0.515601		
Η	-1.408646	0.625914	1.252912		
0	0.979431	-1.051641	-0.174073		
TSRO					
С	1.205738	0.257089	0.243713		
С	-1.205739	0.257088	-0.243710		

Н	-1.411737	0.132768	-1.310409
Η	-2.112165	0.668473	0.224139
0	-1.023005	-0.962574	0.367987
0	1.023008	-0.962572	-0.367989
Н	2.112166	0.668476	-0.224128
С	0.000000	1.179395	-0.000001
Η	0.147271	1.818621	-0.869328
Η	-0.147271	1.818627	0.869321
Н	1.411728	0.132766	1.310413
TSIsc)		
С	-1.195974	0.247054	-0.476508
С	0.985202	-0.042955	0.478133
Н	0.264914	-0.984490	0.605943
Н	1.494810	0.015321	1.450660
0	1.750459	-0.386398	-0.525518
0	-1.340734	-0.925804	0.268602
Н	-2.169285	0.751609	-0.439707
С	-0.088004	1.031334	0.201588
Н	-0.435882	1.436545	1.151403
Н	0.313491	1.835869	-0.411971
Н	-0.953195	0.030166	-1.520276
TSD1	l		
С	1.260460	0.427740	0.305619
С	-1.197326	0.142438	0.257572
Н	0.069834	-1.167167	-0.244925
Н	-1.786732	0.319501	1.158969
0	-1.025599	-1.085428	-0.087910
Ο	1.326598	-0.750191	-0.159820
Η	1.779055	1.235367	-0.216527
С	-0.522851	1.176215	-0.352033
Н	-0.199400	1.054597	-1.375385
Η	-0.676076	2.183806	0.006677
Η	1.163627	0.580492	1.386092
TSD2	2		
С	-1.252979	0.058328	-0.437608
С	1.271957	-0.175083	0.471563
Η	0.156701	-0.762974	0.494011
Η	1.785873	-0.052719	1.448989
0	1.891039	-0.080765	-0.553235
0	-1.173822	-1.084309	0.186068
Н	-2.180540	0.709718	-0.132184
С	-0.567867	1.134921	0.236137
Н	-0.662969	1.173438	1.316352
Н	-0.329350	2.061103	-0.278094

Н -1.214117 0.083026 -1.532299 P1 ($CH_2CHOH + HCHO$) P2 (CH3CHO + HCHO) CH₂CHOH С 0.038279 0.441050 0.000027 Η -1.123331 -1.072267 0.000723 Η -0.023789 1.520990 0.000183 0 -1.199722 -0.113110 -0.000102 С 1.192651 -0.207604-0.000036 Η 1.240906 -1.289155 -0.000182 Η 2.118405 0.344639 0.000148 CH₃CHO С -1.162477 -0.147723 0.000031 Η -1.697082 0.225552 -0.875309 -1.147245 -1.233919 -0.002116 Η 0 1.224962 -0.2772790.000174 С 0.233170 0.398164 -0.000705 Η 0.314750 1.502164 0.001344 Η -1.694278 0.221790 0.878736 HCHO С -0.525608 0.000000 -0.000006 Η -1.104928 -0.938699 0.000012 Η -1.104925 0.938701 0.000012 0 0.670438 0.000000 0.000001 P3 С 0.100239 0.865819 0.361355 Η 0.070414 0.573335 1.412672 Η 0.159736 1.953237 0.289206 Ο 1.321368 0.426875 -0.217101 0 1.465110 -0.952131 0.080783 С -1.086295 0.336584 -0.383212 С -1.955670 -0.514386 0.138558 0.973713 Η -1.376771 -0.635040 Η -1.194595 0.671464 -1.410055 Η -1.850700 -0.861298 1.159940 Η -2.800035 -0.886021 -0.426377 $C_2H_2 + CH_2OO$ reaction C_2H_2 С 0.000000 0.000000 -0.596949 0.000000 0.000000 Η -1.659754 С 0.000000 0.000000 0.596948 Η 0.000000 0.000000 1.659759 Com -1.384565 0.210863 -0.400102 0

С	-0.819552	1.114084	0.229318
Н	-0.414298	0.901049	1.211773
Н	-0.781423	2.077892	-0.261628
0	-1.422773	-1.022709	0.164826
С	1.556286	-0.575637	-0.016372
Η	0.664984	-1.176149	0.018973
С	2.527373	0.123066	-0.047705
Η	3.404794	0.722902	-0.078348
TSA			
0	-1.141944	0.064524	-0.393517
С	-0.685280	1.055034	0.239935
Н	-0.451241	0.943579	1.289116
Η	-0.850371	2.014257	-0.234076
0	-0.825468	-1.115947	0.167826
С	1.433893	-0.660610	-0.008686
Η	1.481697	-1.721292	0.031807
С	1.525635	0.545929	-0.081594
Η	1.913729	1.532722	-0.179246
TSIns	sW		
С	-0.333933	0.980908	0.249274
Η	-0.275993	0.842353	1.322006
Н	-0.012887	1.908825	-0.207440
0	-1.248493	0.356741	-0.397689
0	-1.392150	-0.907083	0.131932
С	1.086375	-0.410774	0.020470
С	2.260315	-0.139972	-0.086375
Η	0.042257	-1.021106	0.095528
Η	3.295221	0.091690	-0.184256
TSIns	sO		
С	-2.102935	0.726714	0.030753
Η	-1.316915	1.478553	0.148396
Η	-3.156202	1.027591	-0.001531
0	-1.817590	-0.439357	-0.063876
0	-0.047987	-0.572995	0.012373
Н	1.196531	-1.218271	0.154169
С	1.829479	-0.295807	0.044780
С	2.721508	0.502862	-0.038051
Н	3.512885	1.208336	-0.113898
TSIsc)		
0	2.262843	-0.084946	-0.038266
С	0.987132	-0.334028	-0.027696
Н	0.746133	-0.403441	1.109106
Н	0.633196	-1.295070	-0.419663
0	-1.867785	-0.705615	0.011199

С	-1.430385	0.428416	-0.028748
Η	-2.109588	1.293469	-0.085082
С	-0.015843	0.734825	-0.025482
Н	0.324369	1.754252	0.103731
P1			
0	2.165612	-0.171201	-0.221515
С	1.032990	-0.358681	0.115845
Η	-0.102832	0.914538	1.358119
Н	0.646266	-1.369476	0.328786
0	-1.857425	-0.676513	0.052149
С	-1.325261	0.351507	-0.261952
Н	-1.803818	1.040652	-0.978855
С	0.023868	0.760674	0.281519
Н	0.405304	1.674993	-0.165599
P2			
0	1.180398	-0.105720	-0.000171
Η	1.580104	0.770988	-0.000136
С	-0.123727	-0.010717	0.000275
С	-1.317271	0.016159	-0.000122
Η	-2.377304	0.042125	0.000585
P3			
С	-0.095049	0.942723	0.209628
Η	-0.329492	1.073786	1.267586
Н	-0.007414	1.921398	-0.262841
0	-1.179290	0.322544	-0.451168
0	-1.458678	-0.886098	0.232630
С	1.151760	0.186475	0.056035
С	2.152271	-0.455893	-0.075956
Н	-0.861744	-1.511224	-0.202105
Н	3.048503	-1.015351	-0.192573

Figure S1. (a) Selected low-gradient (s = 0.5 a.u.) isosurface maps; (b) Plots of the RDG versus the electron density ρ_b multiplied by the sign of the second Hessian eigenvalue (λ_2) for the complexes.

RDG graphical analysis reveals the spatial location and the strength of the weak interactions. The blue, green, and red colors mean the strong attractive, poor attractive interactions, and steric effects, respectively. From Figure S1 we can see that the green regions are found between the H and O atoms or between the C and C atoms, indicating the non-covalent interactions in the complexes. The steric effects are also obvious, shown by the notable yellow or red regions in the center of the ring. The results of RDG analysis are in accordance with the AIM investigation.

Figure S2. Optimized geometries of the transition states and products for the insertion reactions at the M06-2X/aug-cc-pVTZ level of theory. (a) $CH_2OO + C_2H_4$ reaction, (b) $CH_2OO + C_2H_2$ reaction