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SI-1. Parametrization of Laplace inversion

The Laplace inversion for the different data sets was parametrized as described in|[I]|. First, the data was scaled
to unity variance using the standard deviation of data points with no signal, i.e. points that solely contained
noise. Although this procedure only provides an estimate of the noise level — while random noise is usually
frequency independent within the bandwidth detected in a high-field NMR experiment, multiplicative or #,
noise? cannot be ruled out a priori — it is generally sufficient, since parametrization of the uniform penalty (UP)
algorithm is not oversensitive to the exact parameter choice®.

Inversion of data was done using an exponential kernel and a generalized Tikhonov regularization with UP
and an additional zero-crossing (ZC) penalty. No singular-value-decomposition-based data compression as
described by Venkataramanan et al.# was performed. The parameters of the uniform penalty inversion were
chosen algorithmically as suggested in [I]| and summarized in Table S1:

Table S1: List of parameters used for Laplace inversion of 7; and diffusion data.

| Parameter name Parameter symbol’ | Value |
Global scaling factor A 1
Curvature compliance O RA, pﬁl %—5
Slope compliance o, S50
Floor compliance o 1074
Averaging parameter (for UP and ZC) n 1
Zero crossing weight oy 1073
Zero crossing limit op 0
Boundary regularization width ho 2
Boundary regularization weight Oy 50/A,
Boundary regularization limit o4 0

R number of dimensions of data set

A,  spacing between data points along dimension r

M, number of points of discretized distribution function along dimension p
N, number of data points along dimension p

The ZC coefficients were limited by the respective coefficient of the UP matrix, hence op was set to zero. For
the non-inverted spectral dimension, the axis was defined by simply numbering the data points consecutively,
thus A, = 1. Furthermore, no boundary penalty was applied along non-inverted dimensions, i.e. sy = 0.
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SI-2. Testing suitability of non-negativity constraint for 7; data

A straightforward method to test the suitability of different parametrizations for Laplace inversion is to compare
their residuals. For the 'H NMR inversion-recovery (IR) data of the [Pyr;3] cation data of [Pyr;3][Tf,N] ionic
liquid (IL) in Vulcan XC-72 carbon black is shown in Fig. S1.
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Figure S1: Analysis of IR data from samples with different pore space loading of VXC-72 carbon black with
[Pyr13][Tf,N] IL. (a) Raw data, normalized to unity noise variance. (b) 7 relaxation time distribution vs.
'H NMR frequency as presented in the main text, obtained using UP regularization and an additional ZC
penalty, but without non-negativity constraint. (c) Residuals of the fit plotted along the recovery time dimen-
sion (coloured lines) and standard deviation of the different spectral data points for each recovery time (black).
(d) T; relaxation time distribution vs. 'H NMR frequency, obtained using an additional non-negativity penalty=.
(e) Residuals of the fit plotted along the recovery time dimension for the fit with non-negativity penalty.



In Fig. Sla, the signal is normalized to unity variance, hence it directly represents the signal-to-noise ratio
(SNR). As expected for data sets recorded with identical parameters, the SNR is approximately proportional
to the pore space loading. All inverted spectra show negative features, although with relatively low ampli-
tude (the colour map values are scaled with the square root of their respective amplitude, but retaining their
sign). For all data sets, the obtained distributions show negative features in the immediate vicinity of the main
relaxation mode. Although these features can be reproduced when the experiments are repeated, moderate
undershooting is not uncommon for data with relatively high SNR and needs to be analyzed carefully to avoid
overinterpretation®. On the other hand, the weak negative features appearing at short 7; values for the samples
with intermediate and with full pore space loading are characteristic and indicate a physical origin.

The accuracy of the inversion can be visualized by plotting the residuals of the fit (Fig. S1c). Ideally, only
independent and identically distributed (iid) Gaussian white noise without any apparent features should be
obtained. This can be observed for the samples with 1/10th and 1/3rd of the pore space loaded. At full pore
space loading, however, there are moderate deviations from random noise, which indicate that the conducted
inversion was not able to reproduce all features contained in the data. This can be observed if the kernel is not
capable of reproducing all the signal components. In NMR, this can be the case if data contains exponential as
well as Gaussian features. Inversion with the standard parametrization then leads to oscillating features in the
distribution, and non-random patterns or significant deviations from white noise are found in the residuals. A
more aggressive regularization can suppress these residuals, but the obtained distribution becomes unstable. In
the present case, only the fully loaded sample shows significant deviations from iid white noise. These devia-
tions are primarily located at recovery times fgp < 10™* s and, to a lesser extent, at frp ~ 1072 s. Changes on this
timescale are most probably originating from IL cations that are exchanging between different environments.
Given the non-uniform surface structure and morphology of carbon black, non-exponential contributions in the
T; distribution are plausible.

When processing the identical data with an additional non-negativity penalty, the negative features disappear
for all three data sets and the relaxation modes narrow (Fig. S1d). Considering the residuals (Fig. Sle), the
sample with 1/10th pore space loading, which shows weak exchange features (see main text), displays only
weak changes in the residuals. Hence at the available SNR, negative features do not appear to be necessary to
reproduce the data. However, at 1/3rd pore space loading, the residuals show pronounced non-random pat-
terns. In this case, negative features, although weak in amplitude, are necessary for a consistent reproduction
of the data. Hence the features appearing at T; ~ 10~ s are significant. At full pore space loading, the residuals
are again less affected by non-random features. This is consistent with Fig. 1b in the main text where the sam-
ple with a pore space loading of 1/3rd shows strong exchange features and can on average be considered to
be at the transition between slow and fast exchange. Overall, these data indicate that for these experiments a
non-negativity constraint should be avoided. Considering that the feature width in the 77 distribution changes
if a constraint is imposed, the same processing parameters need to be employed for all data sets to achieve
a reliable comparability of the data, even though for the 1/10th IL loaded sample a non-negativity constraint
does not significantly alter the residuals.



SI-3. Testing suitability of non-negativity constraint for diffusion data

A comparison of the Laplace inversion without and with non-negativity penalty for the diffusion data of the
sample with 1/3rd pore space loading is shown in Fig. S2.
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Figure S2: Analysis of 'H NMR diffusion data from a VXC-72 carbon black sample with 1/3rd of the pore
space loaded with [Pyr3][Tf,N] IL. (a) Diffusion coefficient distribution vs. 'H NMR frequency as presented
in the main text, obtained using a UP regularization and an additional ZC penalty without non-negativity
constraint. The dashed white line represents the boundary chosen to calculate a fast and regular contribution
to the fit. (b) Residuals of the fit plotted along the gradient strength dimension (coloured lines) and standard
deviation from the different spectral data points for each gradient value (black). The data was normalized
to unity noise. (c) Diffusion coefficient distribution vs. 'H NMR frequency, obtained applying an additional
non-negativity penalty®. (d) Residuals of the fit plotted along the gradient strength dimension for the fit with
non-negativity penalty. (e) Contributions to the fit from signal components in the diffusion distribution below
D =1.58"""m?/s (blue solid line for inversion without non-negativity penalty and black dashed line for inversion
with non-negativity penalty) and above D = 1.587!! m?/s (red solid line for inversion without non-negativity
penalty and magenta dashed line for inversion with non-negativity penalty). (f) Standard deviation from the
different points in the gradient strength dimension plotted along the spectral dimension (blue for inversion
without non-negativity penalty and black for inversion with non-negativity penalty).



The distributions of diffusion coefficients with and without non-negativity penalty (Fig. S2a,c) show the same
main features except for the negative components at fast D. Comparing the residuals (Fig. S2b,d), the negative
components in the distribution are clearly supported by the data and therefore considered significant despite
their low amplitude. On the other hand, since the positive and negative features are well separated the same
positive features appear in both distributions, i.e. no artificial features occur in the distribution obtained with a
non-negativity penalty. This is also highlighted when comparing the standard deviation of the residuals calcu-
lated along the gradient strength dimension and plotted vs. the 'H NMR frequency (Fig. S2f). At frequencies
with negative components in the distribution the standard deviation of the non-negativity penalized spectrum
increase significantly, while at other frequencies both data sets show identical deviations.

The contribution to the overall signal from the component with fast D can be obtained by forward calculating
part of the distribution. In Fig. S2e the contributions above and below the white dotted line in Fig. S2a are
compared. Albeit not dominant, the fast moving components clearly contribute to the signal by a significant
fraction. Again, when comparing the contribution without and with non-negativity penalty, the positive part of
the signal is essentially constant.



SI-4. Effect of exchange on spectra and relaxation distribution

To demonstrate the effects of exchange on 7; relaxation vs. NMR frequency 2D spectra, numerical simulations of
a two-spin system with slow and with fast exchange were conducted (Fig. S3). The simulations were performed
using classical equations of motion with an exchange term.” These simulations are used to illustrate arguments
used in the main text but are not representative for the investigated IL system that shows a more complex
exchange behaviour between multiple sites.
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Figure S3: Numerical simulation of two-site exchange for slow (a,c) and fast (b,d) exchange. (a,b) NMR
spectrum (red), with the individual spectra of spin A (blue) and spin B (green). The upper panels show the full
spectrum, the lower panels zoom in onto the base of the spectra. (c,d) 7; distribution vs. NMR frequency. The
solid white lines in (c) mark the position of 7} of the two spins, the dashed line represents the inverse weighted
mean of the relaxation rates.

The parameters used for the simulation are summarized in Table S2:

Table S2: Parameters used to simulate an IR experiment for a two-site spin system with exchange.

| Parameter name | Parameter symbol | Value \
Resonance frequency spin A Va 3.0kHz
Resonance frequency spin B VB —4.0 kHz
Spin-lattice relaxation time spin A Tia 0.5s
Spin-lattice relaxation time spin B Ti g 0.01s
Spin-spin relaxation time spin A s 1.3 ms
Spin-spin relaxation time spin B Ly 1.0 ms
Magnetization ratio % 1:0.3
Exchange rate A — B slow kgow) 300s~!
Exchange rate B — A slow Ksiow) JSiow) % =1000s""
Exchange rate A — B fast fast) 100 x k52 = 300005~
Exchange rate B — A fast kg;m) 100 x kgow) = 100000 s~!
Recovery delays fRD 101 pts., log spaced between 107® s and 100 s

As expected, for slow exchange the two resonances are well separated while for fast exchange coalescence
at the position of the weighted mean frequency is observed (Fig. S3a,b). One cause for negative components
in the relaxation distribution can be seen even in this simple example: the individual spectrum of each of the
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two spins shows a weak resonances at the position of the respective other spin but phase shifted. At least part
of such a contribution will necessarily relax with opposite sign compared to the main resonance.

If complete coalescence occurs (Fig. S3d), a spectrum similar to a single-component spectrum is observed. For
slow exchange without coalescence and exchange faster than relaxation, an additional mode appears in the
relaxation distribution that approximately enables an estimate of exchange rates (Fig. S3c).
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