## Unlocking the key to persistent luminescence with X-ray absorption spectroscopy: A local structure investigation of Cr-substituted spinel-type phosphors

Erin Finley<sup>1</sup>, Michael W Gaultois<sup>2</sup>, Jakoah Brgoch<sup>1\*</sup>

<sup>1</sup>Department of Chemistry, University of Houston, Houston, TX 77204 <sup>2</sup>Leverhulme Research Center for Functional Material Design, Materials Innovation Factory, Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United Kingdom

## **Supporting Information**

**Table S1.** Interatomic distances determined by Rietveld refinement for the solid solution  $Zn(Ga_{1-x}AI_x)_2O_4$ :Cr<sup>3+</sup> (x = 0 - 1).<sup>21</sup>

|                 | Zn–O (Å)  | Ga/AI–O (Å) | Zn–Ga/Al (Å) | Zn–Zn (Å) |
|-----------------|-----------|-------------|--------------|-----------|
| <i>x</i> = 0    | 2.004(6)  | 1.9770(6)   | 3.455        | 3.609     |
| <i>x</i> = 0.25 | 1.9638(4) | 1.9740(4)   | 3.430        | 3.583     |
| <i>x</i> = 0.50 | 1.9665(5) | 1.9508(5)   | 3.405        | 3.557     |
| <i>x</i> = 0.75 | 1.9527(4) | 1.9351(4)   | 3.379        | 3.529     |
| <i>x</i> = 1    | 1.9506(3) | 1.9141(3)   | 3.354        | 3.503     |



**Figure S1.** Phase corrected real-space  $k^2$ -weighted magnitude of the Cr *K* EXAFS across the solid solution Zn(Ga<sub>1-x</sub>Al<sub>x</sub>)<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> (x = 0 - 1)

| intarig the      | N                 | <u>гост (Å)</u>      | <u>r (Å)</u> | ۸r (Å)     | $\sigma^2$ (Å <sup>2</sup> ) |
|------------------|-------------------|----------------------|--------------|------------|------------------------------|
| (a) x = 0 x      | $\frac{2}{2}$ =   | 53.90 <i>R</i> -     | factor = 0.0 | 018        | 0 (//)                       |
| Cr–O             | rea<br>6          | 1.990                | 1.9609(8)    | -0.0284(8) | 0.001(1)                     |
| Cr–Ga            | 6                 | 2.945                | 2.945(8)     | -0.005(8)  | 0.002(1)                     |
| Cr–Zn            | 6                 | 3.453                | 3.43(1)      | -0.03(1)   | 0.003(2)                     |
| (b) $x = 0.2$    | $25 \chi^2_{red}$ | <sub>1</sub> = 74.96 | R-factor =   | 0.020      |                              |
| Cr–O             | 6                 | 2.005                | 1.966(8)     | -0.039(8)  | 0.001(0)                     |
| Cr–Ga            | 5                 | 2.968                | 2.96(2)      | -0.01(2)   | 0.003(1)                     |
| Cr–Al            | 1                 | 2.968                | 2.8(1)       | -0.2(1)    | 0.003(1)                     |
| Cr–Zn            | 6                 | 3.480                | 3.42(3)      | -0.06(3)   | 0.004(2)                     |
| (c) $x = 0.5$    | $0 \chi^2_{rec}$  | <sub>1</sub> = 83.55 | R-factor =   | 0.022      |                              |
| Cr–O             | 6                 | 1.990                | 2.009(9)     | 0.019(9)   | 0.019(2)                     |
| Cr–Ga            | 2                 | 2.945                | 2.96(6)      | 0.02(6)    | 0.002(9)                     |
| Cr–Al            | 4                 | 2.945                | 2.87(3)      | -0.07(3)   | 0.001(7)                     |
| Cr–Zn            | 6                 | 3.453                | 3.46(2)      | 0.01(2)    | 0.004(3)                     |
| (d) $x = 0.7$    | $5 \chi^2_{rec}$  | <sub>1</sub> = 47.97 | 8 R-factor   | = 0.030    |                              |
| Cr–O             | 6                 | 1.990                | 1.99(1)      | 0.01(1)    | 0.005(1)                     |
| Cr–Ga            | 1                 | 2.945                | 2.90(3)      | -0.05(3)   | 0.002*                       |
| Cr–Al            | 5                 | 2.945                | 2.91(1)      | -0.04(1)   | 0.002*                       |
| Cr–Zn            | 6                 | 3.453                | 3.41(2)      | -0.04(2)   | 0.004(3)                     |
| (e) $x = 1 \chi$ | $red^2 =$         | 99.04 <i>R</i> -1    | factor = 0.0 | 034        |                              |
| Cr–O             | 6                 | 1.997                | 1.988(1)     | 0.017(1)   | 0.001(1)                     |
| Cr–Al            | 6                 | 2.877                | 2.90(2)      | 0.02(2)    | 0.002(2)                     |
| Cr–Zn            | 6                 | 3.358                | 3.40(1)      | 0.04(1)    | 0.004(2)                     |
| * indicates      | s para            | meter wa             | as held cor  | nstant     |                              |

**Table S2** Structural parameters around  $Cr^{3+}$  determined by fitting the Cr *K* edge EXAFS.

\_\_\_\_

| Composition                                              | First<br>coordination<br>shell (N <sub>1</sub> = 6) | Second<br>coordination<br>shell (N <sub>2</sub> = 6) | Third<br>coordination<br>shell (N₂ = 6) |
|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| ZnGa <sub>1.995</sub> Cr <sub>0.005</sub> O <sub>4</sub> | $N_{1(O)} = 6$                                      | $N_{2(Ga)} = 6$                                      | $N_{3(Zn)} = 6$                         |
| $7n(G_{2}, \dots, A_{k-n}), \dots, C_{k-n}O_{k}$         | $N_{\rm He} = 6$                                    | $N_{2(Ga)} = 5$                                      |                                         |
| ZII(Ga0.75A10.25)1.995C10.005C4                          | $N_{1(0)} = 0$                                      | $N_{2(AI)} = 1$                                      | $\mathbf{N}_{3(2n)} = 0$                |
| $7n(C_{2}, A)$ (r. ()                                    | N – 6                                               | $N_{2(Ga)} = 2$                                      | N – 6                                   |
| ZII(Gd0.50AI0.50)1.995CI0.005O4                          | $\mathbf{N}_{1(O)} = \mathbf{O}$                    | $N_{2(AI)} = 1$                                      | $\mathbf{N}_{3(Zn)} = \mathbf{O}$       |
|                                                          | N G                                                 | $N_{2(Ga)} = 1$                                      | N C                                     |
| ZII(Gd0.25AI0.75)1.995CI0.005O4                          | $\mathbf{N}_{1(O)} = \mathbf{O}$                    | $N_{2(AI)} = 1$                                      | $IN_{3(Zn)} = O$                        |
| ZnAI <sub>1.995</sub> Cr <sub>0.005</sub> O <sub>4</sub> | $N_{1(O)} = 6$                                      | $N_{2(AI)} = 1$                                      | $N_{3(Zn)} = 6$                         |

**Table S3.** Degeneracy (N) of  $Cr^{3+}$  in each coordination shell across all values of x



**Figure S2.** Phase corrected real-space  $k^2$ -weighted magnitude of the Zn *K* EXAFS across the solid solution Zn(Ga<sub>1-</sub> <sub>x</sub>Al<sub>x</sub>)<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup> (x = 0 - 1).

| EXAFS.                   |                            |                      |                      |                        |                                     |           |
|--------------------------|----------------------------|----------------------|----------------------|------------------------|-------------------------------------|-----------|
|                          | Ν                          | r <sub>xrd</sub> (Å) | r <sub>DFT</sub> (Å) | r <sub>exafs</sub> (Å) | ∆ <i>r<sub>DFT–EXAFS</sub> (Å</i> ) | σ² (Ų)    |
| (a) $x = 0 \chi^2_{red}$ | = 53.90                    | R-factor =           | 0.018                |                        |                                     |           |
| Zn–O                     | 4                          | 2.004                | 1.973                | 1.978(9)               | 0.005(9)                            | 0.004(1)  |
| Zn–Ga                    | 12                         | 3.455                | 3.453                | 3.456(1)               | 0.003(1)                            | 0.004(2)  |
| Zn–Zn                    | 4                          | 3.609                | 3.607                | 3.61(2)                | -0.00(2)                            | 0.001(3)  |
| (b) $x = 0.25 \chi$      | $\chi^{2}_{\rm red} = 973$ | 3.98 <i>R</i> -fact  | or = 0.016           | ;                      |                                     |           |
| Zn–O                     | 4                          | 1.964                | 1.988                | 1.964(6)               | -0.024(6)                           | 0.007(1)  |
| Zn–Ga                    | 9                          | 3.430                | 3.480                | 3.451(4)               | -0.029(4)                           | 0.005(1)  |
| Zn–Al                    | 3                          | 3.430                | 3.480                | 3.22(1)                | -0.26(1)                            | 0.002*    |
| Zn–Zn                    | 4                          | 3.583                | 3.635                | 3.606(4)               | -0.029(4)                           | 0.005(1)  |
| (c) $x = 0.50 \chi$      | $x_{\rm red}^2 = 254$      | 42.96 <i>R</i> -fac  | tor = 0.03           | 0                      |                                     |           |
| Zn–O                     | 4                          | 1.967                | 1.970                | 1.96(1)                | -0.01(1)                            | 0.005(2)  |
| Zn–Ga                    | 8                          | 3.405                | 3.450                | 3.48(1)                | 0.03(1)                             | 0.004(1)  |
| Zn–Al                    | 4                          | 3.405                | 3.450                | 3.25(3)                | -0.19(3)                            | 0.001(3)  |
| Zn–Zn                    | 4                          | 3.557                | 3.603                | 3.63(1)                | 0.03(1)                             | 0.004(1)  |
| (d) $x = 0.75 \chi$      | $\chi^{2}_{red} = 213$     | 57.60 <i>R</i> -fac  | tor = 0.03           | 2                      |                                     |           |
| Zn–O                     | 4                          | 1.953                | 1.985                | 1.950(1)               | 0.035(1)                            | 0.003(1)  |
| Zn–Ga                    | 4                          | 3.379                | 3.424                | 3.40(2)                | -0.01(2)                            | 0.002*    |
| Zn-Al                    | 8                          | 3.379                | 3.432                | 3.38(3)                | -0.05(3)                            | 0.002*    |
| Zn–Zn                    | 4                          | 3.529                | 3.592                | 3.56(3)                | -0.04(3)                            | 0.002*    |
| (e) $x = 1 \chi_{red}^2$ | = 99.04                    | <i>R</i> -factor =   | 0.034                |                        |                                     |           |
| Zn-O                     | 4                          | 1.951                | 1.975                | 1.943(1)               | -0.031(1)                           | 0.003(2)  |
| Zn–Al                    | 12                         | 3.354                | 3.390                | 3.327(6)               | -0.063(6)                           | 0.0012(8) |
| Zn-Zn                    | 4                          | 3.503                | 3.540                | 3.57(3)                | 0.03(3)                             | 0.001(2)  |
| * indicates pa           | arameter                   | was held c           | onstant              |                        |                                     |           |

**Table S4** Structural parameters around  $Zn^{2+}$  determined by fitting the Zn K edgeEXAFS.

| Composition                                              | coordination<br>shell (N <sub>1</sub> = 4) | coordination shell (N <sub>2</sub> = 12) | coordination<br>shell (N₃ = 4) |  |  |
|----------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------|--|--|
| ZnGa <sub>1.995</sub> Cr <sub>0.005</sub> O <sub>4</sub> | $N_{1(O)} = 4$                             | $N_{2(Ga)} = 12$                         | $N_{3(Zn)} = 4$                |  |  |
| Zn(Gao 75Alo 25)1 995Cro 005O4                           | $N_{1(0)} = 4$                             | N <sub>2(Ga)</sub> = 9                   | $N_{3(7n)} = 4$                |  |  |
|                                                          | $\mathbf{U}(0) = 1$                        | $N_{2(AI)} = 3$                          |                                |  |  |
|                                                          | N <sub>1(O)</sub> = 4                      | N <sub>2(Ga)</sub> = 8                   | $N_{2(7n)} = 4$                |  |  |
|                                                          |                                            | $N_{2(AI)} = 4$                          | <b>13</b> (21) - <b>1</b>      |  |  |
| Zn(Gao or Alo zr), or Cro or O(                          | N <sub>1(O)</sub> = 4                      | $N_{2(Ga)} = 4$                          | $N_{2(7-)} - A$                |  |  |
| LII(0a0.25A10.75)1.995010.00504                          |                                            | $N_{2(AI)} = 8$                          | 1 <b>1</b> 3(2n) — 4           |  |  |
| ZnAI <sub>1.995</sub> Cr <sub>0.005</sub> O <sub>4</sub> | $N_{1(O)} = 4$                             | N <sub>2(AI)</sub> = 12                  | $N_{3(Zn)}=4$                  |  |  |

**Table S5.** Degeneracy (N) of Zn in each coordination shell across all values of x