Supporting Information

Unusual Temperature-Sensitive Excimer Fluorescence from Discrete π - π Dimer Stacking of Anthracene in a Crystal

Yue Shen,^a Haichao Liu,^{*a} Jungang Cao,^b Shitong Zhang,^a Weijun Li,^c and Bing

Yang*a

^a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China

^b College of Chemistry, Jilin University, Changchun, 130012, P. R. China

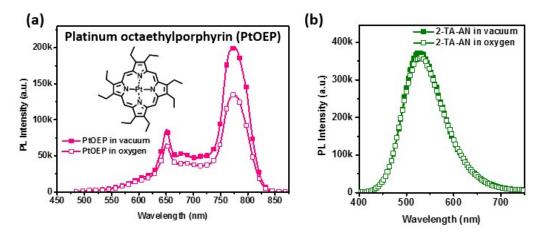
^c State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

E-mail: hcliu@jlu.edu.cn, yangbing@jlu.edu.cn

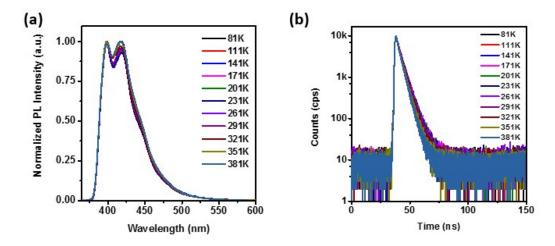
Contents

SI. Experimental Section

SII. Figures and Tables


SIII. References

SI. Experimental Section


General Methods:

All the reagents and solvents used for the measurements were purchased from Aldrich and Acros companies and used without further purification. Single crystals of 2-TA-AN, 1-TA-AN, and mTPA-9-AN are prepared according to previous reports.^{1, 2} The ¹H-nuclear magnetic resonance (NMR) spectra were recorded on an AVANCZ 500 spectrometers at 298 K by utilizing deuterated dimethyl sulfoxide (DMSO) as solvents and tetramethylsilane (TMS) as a standard. The fluorescent spectra and lifetimes were carried out with an Edinburgh FLS-980 with an EPL-375 optical laser using the programmed temperature method. "The programmed temperature method" means the changing of temperature is gradually increased. The diffraction experiments under ambient conditions were carried out on a Rigaku R-AXIS RAPID diffractometer equipped with a Mo-K α and control Software using the RAPID AUTO at 100 K. Crystal structure was solved with direct methods and refined with a full-matrix least-squares technique using the SHELXS programs.

SII. Figures and Tables

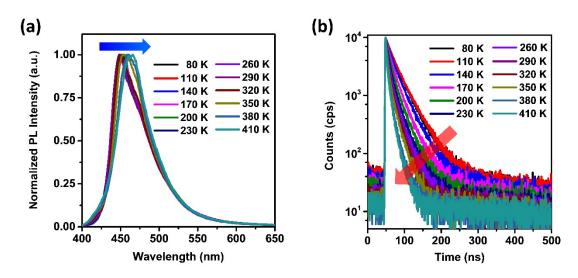

Figure S1. PL spectra of (a) PtOEP powder and (b) 2-TA-AN crystalline powder in vacuum and air. Herein, PtOEP as a comparison with 2-TA-AN, is metal complex whose luminescent intensity is sensitive to oxygen. This phenomenon also demonstrates that the emission from 2-TA-AN crystalline powder is fluorescence rather than phosphorescence.

Figure S2. (a) PL spectra and (b) time-resolved spectra of 1 wt % 2-TA-AN in polymethyl methacrylate (PMMA) with the increasing temperature.

Temperature (K)	lifetimes (ns)
81	4.22
111	4.55
141	4.54
171	4.53
201	4.46
231	4.39
261	4.30
291	4.20
321	4.06
351	3.88
381	3.65

Table S1. The lifetimes of 2-TA-AN in 1 wt % film at different temperature.

Figure S3. (a) PL spectra and (b) time-resolved spectra of 1-TA-AN crystal with the increasing temperature.

Temperature (K)	τ_1 (ns)	τ_2 (ns)
80	20.98 (48.07%)	42.47 (51.93%)
110	19.68 (37.80%)	40.58 (62.20%)
140	18.55 (50.36%)	38.52 (49.64%)
170	14.42 (54.70%)	35.05 (45.30%)
200	10.49 (47.76%)	29.48 (52.24%)
230	8.28 (47.22%)	26.3 (52.78%)
260	6.89 (47.22%)	24.29 (52.78%)
290	6.00 (48.37%)	22.80 (51.63%)
320	5.28 (47.35)	20.45 (52.65%)
350	4.92 (46.52%)	19.21 (53.48%)
380	4.37 (55.80%)	16.32 (44.20%)
410	3.45 (47.06%)	13.40 (52.94%)

 Table S2. The lifetimes of 1-TA-AN crystal at different temperature.

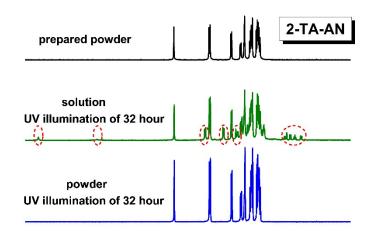
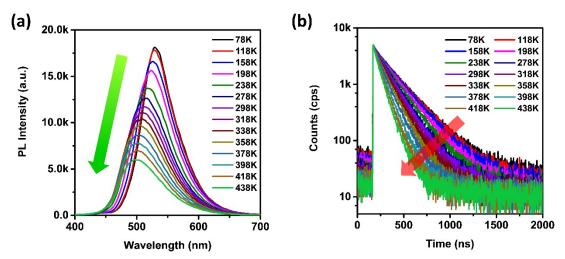



Figure S4. NMR spectra of 2-TA-AN compound.

Figure S5. (a) PL spectra and (b) time-resolved spectra of mTPA-9-AN crystal with the increasing temperature.

Temperature (K)	lifetimes (ns)
78	231
118	224
158	214
198	199
238	182
278	165
298	155
318	146
338	136
358	126
378	113
398	99
418	89
438	79

 S3. The lifetimes of mTPA-9-AN crystal at different temperature.

Unit cell parameters	2-TA-AN
crystal color	yellow
empirical formula	$C_{26}H_{16}S_2$
formula weight	392.51
<i>T</i> [K]	100
crystal system	monoclinic
space group	C 2/c
<i>a</i> [Å]	16.8912(5)
<i>b</i> [Å]	11.8970(5)
<i>c</i> [Å]	19.6308(7)
α [°]	90
eta [°]	104.361(2)
γ [°]	90
V[Å ³]	3821.6(2)
Ζ	8
F(000)	1632
density [g/cm ³]	1.364
μ [mm ⁻¹]	0.287
reflections collected	16822
unique reflections	3920
<i>R</i> (int)	0.0267
GOF	1.106
$R_{I}[I>2\sigma(I)]$	0.0384
$\omega R_2 [I > 2\sigma(I)]$	0.0889
R_1 (all data)	0.0430
$\omega R2$ (all data)	0.0912
CCDC number	1914211

Table S4. Crystal data and structure refinement parameters of 2-TA-AN at 100 K.

SIII. References

- 1. H. Liu, L. Yao, B. Li, X. Chen, Y. Gao, S. Zhang, W. Li, P. Lu, B. Yang and Y. Ma, *Chem. Commun.*, 2016, **52**, 7356-7359.
- Y. Shen, H. Liu, S. Zhang, Y. Gao, B. Li, Y. Yan, Y. Hu, L. Zhao and B. Yang, *J. Mater. Chem. C*, 2017, 5, 10061-10067.