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S.I. PNOC EXPRESSIONS FOR NLOPS

The transformation matrix C corresponds to the change between atomic orbitals (AOs) and
natural orbitals (NOs)
NO — (Z’)AOC (1)

where xVO and ¢ are row vectors, and the linear combination of atomic orbitals (LCAO) co-
efficients C are organized in the columns of C. This matrix is used to obtain the projection from
AOs basis to NOs basis within the first-order reduced density matrix (1-RDM) representation of
NLOPs:
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where M) is the transition dipole matrix and AU1-n) is the n-order derivative of the 1-RDM

with respect to field in the directions ji ... j, calculated in the NO basis:

MY = cThic (5)
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The latter expression can be further developed to obtain the contribution of orbital p to the

corresponding NLOP:
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Equations 10, 12 and 14 represent the contribution of orbital p to the polarizability, the first- and
the second-hyperpolarizability, respectively. This analysis can be straightforwardly extended to

high-order properties.

S.II. ORIGIN-DEPENDENCY IN PNOC

In PNOC, the origin—dependency comes directly from the M) matrix and can affect the orbital
contributions to the optical properties. For example, the ¢; , component upon translation of the

system by a vector 7; can be evaluated as:

0l p (T}) = = A (| ri = Ti | 2p) — §A§Jq) O | =T | )
q7p

= 0 p(0) + TiAy)

where we assumed the orthonormality of the NOs, (X, | X4) = 8pq. In this work, we have assumed

that the origin axis is fixed at the center of mass.
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For systems centrosymmetric along the studied axis 7, all diagonal matrix elements Dg}, are
equal to zero (same holds for higher odd derivatives). In such cases, this property makes PNOC
free of the origin—dependency problem and supports its usage in the analysis especially of the o;;

and %;;; components (in such systems f3;; vanishes).

S.III. NUMERICAL DIFFERENTIATION OF 1-RDMS

The 1-RDM derivatives were obtained using numerical differentiation of each matrix element
separately. For computing the elements of DU), DUJ) and DU/J), central differences formula

utilizing 4—, 5— and 6-points were used:!

D) :%Fj [Duv(—2F;) — 8Dyy(—F))
+8Dyv (Fj) — Dyuv(2Fj)] (15)
D) =y [-Duv(-26) 16030
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Dy :@ [Dyv(—4F;) — 34Dy (—2F;) + 64Dy (—F))
—64Dyy (F}) + 34Dy (2F;) — Dy (4F))] (17)

These expressions provide total values of NLOPs consistent with the ones obtained from the
analogous differentiation of total energies in the same manner. The numerical accuracy of Egs.
15-17 (using F;=0.002 a.u.) was tested against the Romberg-Rutishauser iterative differentiation
scheme of the total electronic energies (using a minimal value of F;=0.0005 a.u.), which success-
fully reduces the truncation errors coming from higher derivatives.?* The errors committed in the
total value of NLOP (obtained as the sum of PNOC contributions) were below 0.01% in o, and

0.5% in V...



S.IV. ORBITAL PARTITIONING WITHIN SUM-OVER-STATES

The results of the PNOC scheme have been compared with the results obtained with sum—over—

states (SOS), which is the most common method to analyze the nature of the electronic response.

Within the SOS formalism, OcSOS and ¥; S are defined as:
SOS ) Z .uOmlJmO (18)
Ey—
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where Wy, = (P | i | Pp) is the i~th component of the transition dipole moment between two

states ¥, and ¥, E,,, is the energy of the m—th state, and i € {x,y,z}.

The SOS definition of the NLOPs is a true representation of the coupled response only if
the (complete) set of the unperturbed wavefunctions {¥,,} are the eigenfunctions of the exact
Hamiltonian of the unperturbed system.*> For many—electron systems this is fulfilled only by
the full-configuration interaction (FCI) method. In the case of other electronic structure methods
providing information on the excited states, such as configuration interaction singles (CIS) or time-
dependent Hartree-Fock (TDHF), the SOS expressions yield approximate uncoupled values of the
NLOPs. 51!

A popular variant of the SOS is uncoupled Hartree—Fock (UCHF),® which employs the eigen-
value and eigenfunctions of the non-interacting Hamiltonian (i.e., the exact field-free Hamiltonian
of the system minus the electron-electron operator). Owe to the Slater—Condon rules for single—

determinant wavefunctions, the one—particle operator term (¥q | {I; | ¥,;) is non—zero only for
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single—excitation excited states. Therefore, the UCHF expression for OtZLZJCHF and }/ZLZ]ZCZHF is:8
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where the p, g, r indices run over doubly occupied molecular orbitals (MOs), the a, b, ¢ indices run
over virtual molecular orbitals, and ¢, and €, are p—th canonical MO and its energy, respectively.
UCHEF is known to underestimate the coupled values of NLOPs. For polarizabilities, the errors are
usually about 20-40%, whereas for first and second hyperpolarizabilities the errors can be as large
as 80%-100% (or even larger).58-10:12

SOS represents the response to the external field in terms of dipole allowed transitions between
the states. However, it is possible to express it in terms of the orbitals involved in the transi-
tions. For example, in UCHE, the contribution of a particular term in the Eq. 20 can be equally
divided between ¢, and ¢, molecular orbitals. In the case of FCI, the wavefunction is no longer
a one-Slater determinant and, the restriction to single excitations holds no more. However, an
approximate partitioning of OCZSZOS can be done if one assumes that the character of NOs does not
change significantly during the transition to energetically higher states. Then, one can distribute
the single summation term of Eq. 18 (related to the transition from the ground state to the m—
th excited state) into (XZSZ%S NO contributions, using the weights w), ,, defined by changes of the

occupancy 7, of p—th NO during the transition from Wy (1, o) to ¥y, (1 ):

Zsz(ips _ _22 W l»lo;n_ﬂmo 22)
m
Wpm = om0 23)

Yy 1ngm—ngl



where U,,0 and E,, are defined in Eqs. 18 and 19. For CIS or TDHF, the same partitioning can
be adapted using a different definition for the weights (w,c,},;q;/ TDHF) involving the square of the
coefficients of the single excitations ¢, — ¢, in which the molecular orbital ¢, is involved (c},):

1
Wom =2 X () (24)

q7p
In the case of the components of higher—order NLOPs (e.g., ¥..;.), such SOS partitioning is also
possible, however, due to the high inaccuracy of the uncoupled approximation, further decompo-
sition is, at the very least, questionable. Therefore, in our analysis we have focused only on the

SOS orbital contributions to ot;.



S.V.  SUPPLEMENTARY TABLES

TABLE S.I. Comparison between the orbital contributions to ¢, in (Hy)3 obtained from the SOS and the
PNOC schemes. For each particular method, the absolute values (in a.u.) of the NOs contributions to o,
are presented (relative contributions given in parentheses). All methods employed the cc—pVDZ basis set.

NO SOS(UCHF)  SOS(TDHF)  PNOC(RHF) SOS(FCI) PNOC(FCI)
1o} 0.54 (1.5%) 039 (0.7%)  0.87 (1.6%) 039 (0.8%)  0.85 (1.7%)
lo 272 (7.4%) 218 (3.9%) 440 (71.9%) 174 (3.5%)  4.04 (8.0%)
20, 15.01 (41.1%) 2532 (45.4%) 22.64 (40.6%) 22.66 (45.1%) 19.91 (39.5%)
20, 14.96 (41.0%)  25.47 (45.7%)  22.60 (40.5%) 22.63 (45.0%) 17.48 (34.7%)
30, 266 (7.3%) 214 (3.8%) 439 (7.9%) 141 (2.8%)  3.17 (6.3%)
30, 048 (1.3%) 020 (0.4%)  0.87 (1.6%) 049 (1.0%)  0.71 (1.4%)

Sum 6(FV)  36.38(99.6%) 55.70 (99.9%) 55.75(99.9%) 49.30(98.1%) 46.15 (91.6%)
4o, 0.00 (0.0%) 001 (0.0%) 0.00 (0.0%) 022 (0.4%) 0.14 (0.3%)
4ot 004 (0.1%)  0.02 (0.0%) 001 (0.0%) 0.17 (03%) 021 (0.4%)
50, 0.03 (0.1%)  0.02 (0.0%) 0.00 (0.0%) 0.11 (02%) 027 (0.5%)
50, 005 (0.1%)  0.01 (0.0%) 001 (0.0%) 0.14 (03%) 175 (3.5%)
60, 0.02 (0.1%) 0.0 (0.0%) 0.0l (0.0%) 0.0 (0.0%) 051 (1.0%)
60, 001 (0.0%) 001 (0.0%) 0.00 (0.0%) 002 (0.0%) 020 (0.4%)
70, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 007 (0.1%) 0.14 (0.3%)
70, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 0.05 (0.1%) 051 (1.0%)
80, 0.00 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 001 (0.0%) 0.11 (0.2%)
80, 0.00 (0.0%)  0.00 (0.0%)  0.02 (0.0%) 0.00 (0.0%) 0.18 (0.4%)
95, 0.00 (0.0%)  0.00 (0.0%) 0.01 (0.0%) 007 (0.1%)  0.01 (0.0%)
90;" 0.00 (0.0%)  0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%)  0.05 (0.1%)

Sumo(HV)  0.16 (0.4%)  0.08 (0.1%) 005 (0.1%) 088 (1.7%) 4.09 (8.1%)
17, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 0.01 (0.0%) 0.1 (0.0%)
17, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 001 (0.0%) 0.2 (0.0%)
27, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 001 (0.0%) 0.02 (0.0%)
27, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 001 (0.0%) 0.01 (0.0%)
3, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 001 (0.0%) 0.01 (0.0%)
3, 0.00 (0.0%)  0.00 (0.0%) 0.0 (0.0%) 001 (0.0%) 0.0 (0.0%)

Sum Z(HV)  0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 005 (0.1%)  0.08 (0.2%)

Total 36.54 55.78 55.80 50.27 50.39




S.VI. SUPPLEMENTARY FIGURES
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FIG. S.1. Cartesian representation of the NOs of the unperturbed ground state of (H;)3, obtained at the
FCl/cc-pVDZ level of theory. The occupancy of each NO is presented below each orbital.
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FIG. S.2. Graphical representation of selected NOs of benzene (left) and p—benzyne (right), along with
their occupancies. Obtained at (U)CCSD/aug—cc—pVDZ level of theory.
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