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S.I. PNOC EXPRESSIONS FOR NLOPS

The transformation matrix C corresponds to the change between atomic orbitals (AOs) and

natural orbitals (NOs)

χNO = φAOC (1)

where χNO and φAO are row vectors, and the linear combination of atomic orbitals (LCAO) co-

efficients C are organized in the columns of C. This matrix is used to obtain the projection from

AOs basis to NOs basis within the first-order reduced density matrix (1-RDM) representation of

NLOPs:

αi j =−∑
µν

D( j)
µνh(i)νµ =−Tr(D( j)h(i))

=−Tr(C−1D( j)(C−1)†C†h(i)C)

=−Tr(∆( j)M(i)) =−∑
pq

∆
( j)
pq M(i)

qp (2)

βi jk =−∑
µν

D( jk)
µν h(i)νµ =−Tr(D( jk)h(i))

=−Tr(C−1D( jk)(C−1)†C†h(i)C)

=−Tr(∆( jk)M(i)) =−∑
pq

∆
( jk)
pq M(i)

qp (3)

γi jkl =−∑
µν

D( jkl)
µν h(i)νµ =−Tr(D( jkl)h(i))

=−Tr(C−1D( jkl)(C−1)†C†h(i)C)

=−Tr(∆( jkl)M(i)) =−∑
pq

∆
( jkl)
pq M(i)

qp (4)

where M(i) is the transition dipole matrix and ∆( j1... jn) is the n-order derivative of the 1-RDM

with respect to field in the directions j1 . . . jn calculated in the NO basis:

M(i) = C†h(i)C (5)

∆( j) = C−1D( j)(C−1)† (6)

∆( jk) = C−1D( jk)(C−1)† (7)

∆( jkl) = C−1D( jkl)(C−1)† (8)
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The latter expression can be further developed to obtain the contribution of orbital p to the

corresponding NLOP:

αi j =−∑
pq

∆
( j)
pq M(i)

qp = ∑
p

αi j,p (9)

αi j,p =−∆
( j)
ppM(i)

pp−
1
2 ∑

q6=p

(
∆
( j)
pq M(i)

qp +∆
( j)
qp M(i)

pq

)
=−∆

( j)
ppM(i)

pp− ∑
q6=p

∆
( j)
pq M(i)

pq (10)

βi jk =−∑
pq

∆
( jk)
pq M(i)

qp = ∑
p

βi jk,p (11)

βi jk,p =−∆
( jk)
pp M(i)

pp−
1
2 ∑

q6=p

(
∆
( jk)
pq M(i)

qp +∆
( jk)
qp M(i)

pq

)
=−∆

( jk)
pp M(i)

pp− ∑
q6=p

∆
( jk)
pq M(i)

pq (12)

γi jk =−∑
pq

∆
( jkl)
pq M(i)

qp = ∑
p

γi jkl,p (13)

γi jkl,p =−∆
( jkl)
pp M(i)

pp−
1
2 ∑

q6=p

(
∆
( jkl)
pq M(i)

qp +∆
( jkl)
qp M(i)

pq

)
=−∆

( jkl)
pp M(i)

pp− ∑
q6=p

∆
( jkl)
pq M(i)

pq (14)

Equations 10, 12 and 14 represent the contribution of orbital p to the polarizability, the first- and

the second-hyperpolarizability, respectively. This analysis can be straightforwardly extended to

high-order properties.

S.II. ORIGIN–DEPENDENCY IN PNOC

In PNOC, the origin–dependency comes directly from the M(i) matrix and can affect the orbital

contributions to the optical properties. For example, the αii,p component upon translation of the

system by a vector Ti can be evaluated as:

αii,p(Ti) =−∆
( j)
pp〈χp | ri−Ti | χp〉− ∑

q6=p
∆
( j)
pq 〈χp | ri−Ti | χq〉

= αii,p(0)+Ti∆
( j)
pp

where we assumed the orthonormality of the NOs, 〈χp | χq〉= δpq. In this work, we have assumed

that the origin axis is fixed at the center of mass.
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For systems centrosymmetric along the studied axis i, all diagonal matrix elements D(i)
pp are

equal to zero (same holds for higher odd derivatives). In such cases, this property makes PNOC

free of the origin–dependency problem and supports its usage in the analysis especially of the αii

and γiiii components (in such systems βiii vanishes).

S.III. NUMERICAL DIFFERENTIATION OF 1-RDMS

The 1-RDM derivatives were obtained using numerical differentiation of each matrix element

separately. For computing the elements of D( j), D( j j) and D( j j j), central differences formula

utilizing 4–, 5– and 6–points were used:1

D( j)
µν =

1
12Fj

[
Dµν(−2Fj)−8Dµν(−Fj)

+8Dµν(Fj)−Dµν(2Fj)
]

(15)

D( j j)
µν =

1
12F2

j

[
−Dµν(−2Fj)+16Dµν(−Fj)

−30Dµν(0)+16Dµν(Fj)−Dµν(2Fj)
]

(16)

D( j j j)
µν =

1
48F3

j

[
Dµν(−4Fj)−34Dµν(−2Fj)+64Dµν(−Fj)

−64Dµν(Fj)+34Dµν(2Fj)−Dµν(4Fj)
]

(17)

These expressions provide total values of NLOPs consistent with the ones obtained from the

analogous differentiation of total energies in the same manner. The numerical accuracy of Eqs.

15-17 (using Fj=0.002 a.u.) was tested against the Romberg-Rutishauser iterative differentiation

scheme of the total electronic energies (using a minimal value of Fj=0.0005 a.u.), which success-

fully reduces the truncation errors coming from higher derivatives.2,3 The errors committed in the

total value of NLOP (obtained as the sum of PNOC contributions) were below 0.01% in αzz and

0.5% in γzzzz.
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S.IV. ORBITAL PARTITIONING WITHIN SUM–OVER–STATES

The results of the PNOC scheme have been compared with the results obtained with sum–over–

states (SOS), which is the most common method to analyze the nature of the electronic response.

Within the SOS formalism, αSOS
ii and γSOS

iiii are defined as:

α
SOS
ii =−2 ∑

m 6=0

µ0mµm0

E0−Em
(18)

γ
SOS
iiii =−24 ∑

m6=0
∑
n6=0

∑
s 6=0

µ0n(µnm−δnmµ00)(µms−δmsµ00)µs0

(E0−En)(E0−Em)(E0−Es)

+24 ∑
m 6=0

µ0mµm0

(E0−Em)
∑
n6=0

µ0nµn0

(E0−En)2 (19)

where µmn = 〈Ψm | µ̂i | Ψn〉 is the i–th component of the transition dipole moment between two

states Ψm and Ψn, Em is the energy of the m–th state, and i ∈ {x,y,z}.

The SOS definition of the NLOPs is a true representation of the coupled response only if

the (complete) set of the unperturbed wavefunctions {Ψm} are the eigenfunctions of the exact

Hamiltonian of the unperturbed system.4,5 For many–electron systems this is fulfilled only by

the full-configuration interaction (FCI) method. In the case of other electronic structure methods

providing information on the excited states, such as configuration interaction singles (CIS) or time-

dependent Hartree-Fock (TDHF), the SOS expressions yield approximate uncoupled values of the

NLOPs.5–11

A popular variant of the SOS is uncoupled Hartree–Fock (UCHF),8 which employs the eigen-

value and eigenfunctions of the non-interacting Hamiltonian (i.e., the exact field-free Hamiltonian

of the system minus the electron-electron operator). Owe to the Slater–Condon rules for single–

determinant wavefunctions, the one–particle operator term 〈Ψ0 | µ̂i | Ψm〉 is non–zero only for
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single–excitation excited states. Therefore, the UCHF expression for αUCHF
zz and γUCHF

zzzz is:8

α
UCHF
zz =−4

occ

∑
p

vir

∑
a

〈φp | µ̂z | φa〉〈φa | µ̂z | φp〉
εp− εa

(20)

γ
UCHF
zzzz −24

[
2

occ

∑
p,q,r

vir

∑
a

〈φp | µ̂z | φa〉〈φa | µ̂z | φr〉〈φr | µ̂z | φq〉〈φq | µ̂z | φp〉
(εp− εa)(εq− εa)(εr− εa)

−2
occ

∑
p,q

vir

∑
a,c

〈φp | µ̂z | φa〉〈φa | µ̂z | φc〉〈φc | µ̂z | φq〉〈φq | µ̂z | φp〉
(εp− εa)(εq− εa)(εq− εc)

−2
occ

∑
p,r

vir

∑
a,b

〈φp | µ̂z | φa〉〈φa | µ̂z | φb〉〈φb | µ̂z | φr〉〈φr | µ̂z | φp〉
(εp− εa)(εp− εb)(εr− εb)

+2
occ

∑
p

vir

∑
a,b,c

〈φp | µ̂z | φa〉〈φa | µ̂z | φb〉〈φb | µ̂z | φc〉〈φc | µ̂z | φp〉
(εp− εa)(εp− εb)(εp− εc)

−2
occ

∑
p,q

vir

∑
a,b

〈φp | µ̂z | φa〉〈φa | µ̂z | φq〉〈φq | µ̂z | φb〉〈φb | µ̂z | φp〉
(εp− εa)(εp− εb)(εq− εa)

]
(21)

where the p, q, r indices run over doubly occupied molecular orbitals (MOs), the a, b, c indices run

over virtual molecular orbitals, and φp and εp are p–th canonical MO and its energy, respectively.

UCHF is known to underestimate the coupled values of NLOPs. For polarizabilities, the errors are

usually about 20-40%, whereas for first and second hyperpolarizabilities the errors can be as large

as 80%-100% (or even larger).6,8,10,12

SOS represents the response to the external field in terms of dipole allowed transitions between

the states. However, it is possible to express it in terms of the orbitals involved in the transi-

tions. For example, in UCHF, the contribution of a particular term in the Eq. 20 can be equally

divided between φp and φa molecular orbitals. In the case of FCI, the wavefunction is no longer

a one-Slater determinant and, the restriction to single excitations holds no more. However, an

approximate partitioning of αSOS
zz can be done if one assumes that the character of NOs does not

change significantly during the transition to energetically higher states. Then, one can distribute

the single summation term of Eq. 18 (related to the transition from the ground state to the m–

th excited state) into αSOS
zz,p NO contributions, using the weights wp,m defined by changes of the

occupancy np of p–th NO during the transition from Ψ0 (np,0) to Ψm (np,m):

α
SOS
zz,p =−2∑

m
wp,m

µ0mµm0

E0−Em
(22)

wp,m =
|np,m−np,0|

∑q |nq,m−nq,0|
(23)
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where µm0 and Em are defined in Eqs. 18 and 19. For CIS or TDHF, the same partitioning can

be adapted using a different definition for the weights (wCIS/TDHF
p,m ) involving the square of the

coefficients of the single excitations φp→ φq in which the molecular orbital φp is involved (cm
pq):

wCIS/TDHF
p,m =

1
2 ∑

q6=p

(
cm

pq
)2 (24)

In the case of the components of higher–order NLOPs (e.g., γzzzz), such SOS partitioning is also

possible, however, due to the high inaccuracy of the uncoupled approximation, further decompo-

sition is, at the very least, questionable. Therefore, in our analysis we have focused only on the

SOS orbital contributions to αzz.
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S.V. SUPPLEMENTARY TABLES

TABLE S.I. Comparison between the orbital contributions to αzz in (H2)3 obtained from the SOS and the
PNOC schemes. For each particular method, the absolute values (in a.u.) of the NOs contributions to αzz

are presented (relative contributions given in parentheses). All methods employed the cc–pVDZ basis set.

NO SOS(UCHF) SOS(TDHF) PNOC(RHF) SOS(FCI) PNOC(FCI)

1σ+
g 0.54 (1.5%) 0.39 (0.7%) 0.87 (1.6%) 0.39 (0.8%) 0.85 (1.7%)

1σ+
u 2.72 (7.4%) 2.18 (3.9%) 4.40 (7.9%) 1.74 (3.5%) 4.04 (8.0%)

2σ+
g 15.01 (41.1%) 25.32 (45.4%) 22.64 (40.6%) 22.66 (45.1%) 19.91 (39.5%)

2σ+
u 14.96 (41.0%) 25.47 (45.7%) 22.60 (40.5%) 22.63 (45.0%) 17.48 (34.7%)

3σ+
g 2.66 (7.3%) 2.14 (3.8%) 4.39 (7.9%) 1.41 (2.8%) 3.17 (6.3%)

3σ+
u 0.48 (1.3%) 0.20 (0.4%) 0.87 (1.6%) 0.49 (1.0%) 0.71 (1.4%)

Sum σ (FV) 36.38 (99.6%) 55.70 (99.9%) 55.75 (99.9%) 49.30 (98.1%) 46.15 (91.6%)

4σ+
g 0.00 (0.0%) 0.01 (0.0%) 0.00 (0.0%) 0.22 (0.4%) 0.14 (0.3%)

4σ+
u 0.04 (0.1%) 0.02 (0.0%) 0.01 (0.0%) 0.17 (0.3%) 0.21 (0.4%)

5σ+
g 0.03 (0.1%) 0.02 (0.0%) 0.00 (0.0%) 0.11 (0.2%) 0.27 (0.5%)

5σ+
u 0.05 (0.1%) 0.01 (0.0%) 0.01 (0.0%) 0.14 (0.3%) 1.75 (3.5%)

6σ+
g 0.02 (0.1%) 0.00 (0.0%) 0.01 (0.0%) 0.00 (0.0%) 0.51 (1.0%)

6σ+
u 0.01 (0.0%) 0.01 (0.0%) 0.00 (0.0%) 0.02 (0.0%) 0.20 (0.4%)

7σ+
g 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.07 (0.1%) 0.14 (0.3%)

7σ+
u 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.05 (0.1%) 0.51 (1.0%)

8σ+
g 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.11 (0.2%)

8σ+
u 0.00 (0.0%) 0.00 (0.0%) 0.02 (0.0%) 0.00 (0.0%) 0.18 (0.4%)

9σ+
g 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.07 (0.1%) 0.01 (0.0%)

9σ+
u 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.05 (0.1%)

Sum σ (HV) 0.16 (0.4%) 0.08 (0.1%) 0.05 (0.1%) 0.88 (1.7%) 4.09 (8.1%)

1πu 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.01 (0.0%)

1πg 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.02 (0.0%)

2πu 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.02 (0.0%)

2πg 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.01 (0.0%)

3πu 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.01 (0.0%)

3πg 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.01 (0.0%) 0.01 (0.0%)

Sum π(HV) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%) 0.05 (0.1%) 0.08 (0.2%)

Total αzz 36.54 55.78 55.80 50.27 50.39

9



S.VI. SUPPLEMENTARY FIGURES

σ+
g (ag) σ+

u (b1u)

1 1 πu (b3u + b2u)
1.94440 1.93720

2 2 1
1.92828 0.06989 0.00208 0.00208

3 3 2
0.05137 0.03758 0.00192 0.00192

4 4 3
0.00602 0.00514 0.00019 0.00019

5 5 πg (b3g + b2g)
0.00398 0.00038

6 6 1
0.00028 0.00015 0.00199 0.00199

7 7 2
0.00096 0.00066 0.00024 0.00024

8 8 3
0.00040 0.00008 0.00017 0.00017

9 9
0.00004 0.00003

FIG. S.1. Cartesian representation of the NOs of the unperturbed ground state of (H2)3, obtained at the
FCI/cc-pVDZ level of theory. The occupancy of each NO is presented below each orbital.
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FIG. S.2. Graphical representation of selected NOs of benzene (left) and p–benzyne (right), along with
their occupancies. Obtained at (U)CCSD/aug–cc–pVDZ level of theory.

11



REFERENCES

1H. Z. Hassan, A. A. Mohamad and G. E. Atteia, J. Comput. Appl. Math., 2012, 236, 2622–2631.
2H. Rutishauser, Numerische Mathematik, 1963, 5, 48–54.
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